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Weak-Noise Limit of Stochastic Resonance

V. A. Shneidman, P. 3ung,
* and P. Hanggi

Institute ofPhysics, The University of AugsburgM, emmingerstrasse 6. D 86I-35, Augsburg, Germany
&Received 19 October 1993)

The autocorrelation function of a periodically driven bistable system is considered in the limit of weak
noise. We predict a broad window in the Fourier spectrum with a universal (power law) decay of the
spectral density, accompanied by dips of finite width at the second and fourth harmonics of the driving
frequency. For higher driving frequencies the dips are replaced by peaks of finite though extremely nar-
row width. Analytical results are confirmed by numerical studies and are used to analyze previous ex-
perimental data.

PACS numbers: 05.40.+j

The investigation of periodic perturbations in noisy

nonlinear systems is presently in the limelight of both ex-
perimental and theoretical studies. Of special interest is

the so-called stochastic resonance —a phenomenon due to
synchronization of hopping or threshold crossing with

external modulation. Such effects have been discussed in

a geophysical context [1],for a ring laser [2], for sensory
neurons [3], and for a variety of other applications [4].
This stimulated both theory [5-8] and analog simulations
[9-12].

Typically, the main concern of any theoretical descrip-
tion of stochastic resonance is the autocorrelation func-

tion or the spectral density. The difficulty is that even in

the simplest case of a Gaussian white noise, when the

process can be described by a one-dimensional Fokker-
Planck equation, there exists no exact expression for
those functions. Thus, the search for rigorous analytical
approximations becomes pertinent. One can single out

two situations when the analytical description can be per-

formed more or less completely. The first is the case of
linear response (LR) where the smallest parameter is the

amplitude of the driving force, A [5]. The second is the
weak-noise (WN) limit with the small parameter being

the noise intensity, D. Related studies here are rather

sparce [6,8], and, to our knowledge there has been no

consistent analytical study of the autocorrelation function

up to this date. The case when both the WN and the LR
conditions are satisfied, i.e., D 0 and A/D 0, was

examined in Refs. [5(a)] and [7]. The goal of the present

study is the WN consideration far beyond the LR ap-

proximation, i.e., for A/D Oo. We wish to emphasize

that the %N limit presents an opposite limit as compared

to the LR approximation. Therefore, one can expect
qualitatively diN'erent results for the former limit of weak

noise.
Consider a bistable dynamical variable x(t) subject to

a white noise. Our concern is the standard autocorrela-

tion function

S(t, r )—=&x(t+ r )x(t)) &x(t+ r )&&x(t)) . —

Note that this definition differs from that of Ref. [5(a)]
by the product of average values, but otherwise we will

use the same notations. This definition of S(t, r) re-

moves all periodic components, so that no delta peaks are
expected in the spectral density. Thus, we focus on the

decay of the autocorrelation function with r. For small r
this decay is due to fast equilibration near the current
stable (or metastable) values of the random variable,
x ~ (t). We will be mostly interested in larger time scales
when the decay of S(t, r ) is due to hopping between the
two stable values. In the low-noise limit the quasiequili-
brium probability distributions are sharply peaked near
the values x+(t) and x (t). Thus, one can employ the
two-state rate equation for the probabilities n+ (t) to oc-

cupy the corresponding site [5(a)]:

n+ =W (i)n -W~-—(t)n (2)

where time is measured in the units of the modulation

period. The calculation of a in the above equation for a

particular system should not cause any difficulties as it

can be done within the adiabatic approximation [6,8].
We only note here that a increases with noise and de-

creases with the driving frequency.
From Eqs. (1)-(3) one can obtain the following ex-

pression for the autocorrelation function:

S(t, r) x+(t)x~(t+r)n+(t)n (t)G(t, r), (4)

where, for brevity of notations, we put x =0. In the

above n ~ (t) are the equilibrium (large time) solutions of
Eq. (2), while G(t, r ) is given by

G(i, r ) -exp[a([t+ —,
' ] —[t+ r+ —,

' ]

+ [i ——,
'

1
—[t + r —-' ])] . (5)

Here [t] is the integer part of time reduced by the modu-

lation period. The product of the equilibrium distribu-

tions in Eq. (4) can be derived from the fact that the

The transition probabilities, W+ (t), in the weak-noise

limit have sharp maxima at the instant when the corre-
sponding escape time is the smallest. Thus, in the leading

asymptotic approximation they can be approximated by
delta peaks:

W~(t)-aa(t m~ —,
' ),—(m(-0, 1, . . . ,
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values of n+. (t) change only during the hopping instant.
The values of the discontinuities during hopping, say
from x+ to x, in terms of p =e ' are given by
T- n+(I —p) for n+ and n-, respectively. Together with
the condition n++n —=1 this leads to n+(t)n —(t) =p/
(p+ I ) . Note that this result is time independent, unlike
the values of n+ and n taken separately. The product
x+(t)x+(t+r) in Eq. (4) changes periodically around
some average value. This change, however, is not related
to hopping but arises due to modulation of the equilibri-
um positions. Being less interested in such eff'ects, we
shall treat them later as corrections —they really turn out
to be vanishingly small in a broad range of frequencies.
For the time being we replace the aforementioned prod-
uct by x+ at the hopping instant. This means that the
time dependence of the autocorrelation function is com-
pletely determined by the function G(t, r). After averag-
ing over t one obtains

S(r) = " xgG(fr])p"'
(&+ I)'

where [rj = r —[r] is the fractional part and

(6)

G(y) = 1
—2y(I —p), y ~ —,',

2u —
t
' —2) u(I —u), ) & z .

(7)

At [r] -0 and fr}- —,
' the autocorrelation function has

cusps. One can expect that being repeated periodically
this nonanalyticity will lead to a rather peculiar structure
of the spectrum. When performing the Fourier transfor-
mation of Eq. (6) one can integrate within a period with
subsequent summation of a geometric progression. After
some transformations one ends up with

S( ) g
2P(I —P) Q

( I +p ) ta z 2tr

I cos(trt0/Q )
( )

fl ttcos(m—0/Q)] +p sin (m0/Q)
'

where we explicitly restored the driving frequency Q.
This expression, together with the forthcoming estima-
tions of the region of its validity and corrections, repre-
sents the main results of the present study. The crucial
point is that on average the spectral density (8) is practi-
cally independent of the driving frequency. For p close to
I (i.e., 1

—@=a) the product (1 —p)Q equals [with
q (x+ . . x —)=ll (D/8)' tox'" with t0P'" being the

maximal Kramers frequency (this is discussed below in
greater detail). In this sense the power-law decay,
S(t0)-co is "universal, " and it is remarkable that the
modulation preserves this property of the unmodulated
system, despite the fact that the absolute values of the
spectral density may be increased by modulation by
several orders of magnitude. The periodic factor in Eq.
(8) which modulates the power-law decay has zero values
at each even multiple of the driving frequency. These irn-

A/D» (2m), m =1,2, . . . . (10)

Note that the ratio of A/D should be sufficiently large to
observe at least one dip. This explains why such dips are
absent in the LR approximation which considers the limit
A/D 0. On the other hand, in realistic experimental
and computational situations the values of A/D are limit-
ed by a few tens, as otherwise the Arrhenius factor be-
comes too small. From the condition (10) one thus con-
cludes that while the dip at the second harmonic of the
driving frequency is representative, the dip at the fourth
harmonic will be on the verge of detectability and dips at
higher harmonics can hardly be present in a realistic ex-
perimental situation.

To consider the low frequency limitation -of the above
treatment recall that the asymptotic treatment implicitly
assumes that all nonasymptotic parameters have mod-
erate, finite values. Roughly speaking, that means that
the frequency is expected to be of the order of the largest
Kramers frequency, m~'". More accurately, note that a
in Eq. (3) can be estimated as (D/A) 't cof'"/Q. Large

ply unlimitedly deep dips in the logarithmic scale. The
zeros evidently arise due to the aforementioned
nonanalyticity of the autocorrelation function, and, quali-
tatively, they also emerge from the "random hopping"
approximation [12]. A less trivial question, however, is to
what extent the dips survive for the not extremely low-

noise conditions assumed in Eq. (8). Note that the dips in

the spectral density are not related to any symmetry of
the system. Hence, they are extremely vulnerable with

respect to an increasing of the intensity of noise (or of
other perturbations disregarded so far) which in turn des-
troys the nonanalyticity of the autocorrelation function.
For that reason it is not surprising that only in a very lim-
ited number of experimental studies (see below) were
such dips actually detected; moreover, even in those ex-
periments the dips vanish when the noise is increased
[13].

To assess the limitations of Eq. (8) we consider the ex-
ample of a modulated symmetric quartic potential

U(x) = —x /2+x /4 —Axsin(Qt).

Upon increasing of the noise intensity, D, the sharp steps
in the autocorrelation function S(t, r) are eroded to have
a finite width bt-(A/D) 't Q '. Associated with this
time scale is a characteristic frequency t00-(ht) . For
co« t00 the above analysis holds. Particularly, one can
expect that those even rnultiples of the driving frequency
which are smaller than t00 will lead to distinct though
finite dips in the spectral density. In contrast, when per-
forming the Fourier transformation of the autocorrelation
function at higher frequencies, one will "analyze" the in-
tervals Bt with too fine resolution and will not notice its
nonanalyticity. Thus, no peculiarities in the spectrum are
expected here. The condition for the existence of the mth
dip, mo)) 2m 0, may be thus approximately expressed as
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(D/A) I/2 ( / max ( ( max) —I/2(AD) —I/4 (12)

The width of this window is asymptotically large. For
larger frequencies (though still for to« I) the values of
S(tu) will approach the "intrawell constant, " -D, but

the peaks will protrude over this value provided the driv-

ing amplitude A exceeds an asymptotically small thresh-

Oid (~max) 2/9D l/3

To illustrate and verify the analytical results we per-

formed numerical studies of diffusion in a modulated

values of a mean that the particle is guaranteed to escape
the well when the barrier is the smallest. This, however,
also means that during the preliminary stage of modula-
tion the chances to escape the well are also high. Thus,
at low driving frequencies 0 « tux'"(D/A) '/ the discrete
hopping approximation will not work, in complete analo-

gy with a strong increase of D. No dips are expected
here.

To evaluate the restrictions at large 0, first of all recall
the neglect of the time dependence of x+(t) in Eq. (4).
For small A these values are modulated around average
values like A cos(20t). Taken separately, however,

these corrections will not contribute to the time-averaged
autocorrelation function. Only the higher term, namely,
A cos(20t) cos[20(t+ r)] may become important. In

the leading order in a this fourth-order term results in the
following correction, S~ (tu), to the spectral density:

A atosin(2trto/0)
[to2 —(2n) 2] [sin2(trto/n)+a2]

We do not present the numerical coefficient which, unlike

Eq. (8), is specific solely for the symmetric quartic poten-

tial. Note that at small aQ, there exists a sharp peak at
to=20 with the height -A "/aQ being independent of
the driving frequency (recall that a is proportional to

'—see above). Comparing the height of the peaks
with the main approximation given by Eq. (8), one con-

cludes that for 0» tutt'"(D/A)'/ A the peaks will be-

come detectable, and definitely will prevail over the dips

at the same frequency. For higher approximations in 3
similar peaks are expected at higher even multiples of the

driving frequency. An important point is that the peaks
are intrinsically gnite. Thus, their existence does not con-

tradict the general conclusion of the absence of delta
peaks at even harmonics of 0, which follows from sym-

metry considerations [5(d)].
Away from the peaks the correction given by Eq. (11)

is always small compared to Eq. (8). The large-fre
quency limitation to the validity of the latter comes from

the intrawell dynamics which was disregarded so far. As

long as we are considering frequencies m((1 the intrawell

input to the spectral density is given by a frequency in-

dependent constant of the order of D. Comparing this

with Eq. (8) one obtains the "window" where the spectral

density can be approximated by the sum of Eqs. (8) and

(11), te.
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FIG. 1. Decay of the spectral density. Note the overlap of
cur~es in the regions with no dips or peaks for different driving

frequencies A. The insets show the spectral density as a func-

tion of reduced frequency co/tt in the vicinity of the dips for
0 =)0 and the peak, respectively. The lower inset corre-
sponds to 0 =10 and the upper to 0 10 . Other parame-
ters are given in the text.

quartic potential given by Eq. (9). To solve the corre-

sponding Fokker-Planck equation a matrix continued

fraction method [5(d),14] was employed. Characteristic
results are depicted in Fig. l. We used A =0.121, D
= 7'0 so that the maximal Kramers frequency was of the

order of 10 . Except for very low and very high fre-

quencies, the spectral density (dips or peaks disregarded)
decays like a power law for more than 3 decades with a

coefficient which is practically independent of A. For the

driving frequencies 0 =10 and 10 " one observes dis-

tinct dips at the second harmonic and also tiny dips at the

fourth harmonic (see the lower inset). At higher fre-

quencies the dips are "pierced" by narro~ peaks with the

height which is approximately independent of A. The
structure of a characteristic peak is shown in the upper
inset. Peaks of approximately the same width and height

were also observed at higher frequency 0=10 ' (not
shown in the figure) where, otherwise, the spectral densi-

ty behaves like a constant. At very low frequencies
0=10 which is much smaller than the Kramers fre-

quency, the dips vanish, so that the spectral density be-

comes a monotonous curve; cf. the dot-dashed line in Fig.
l.

Finally, we note that similar curves with dips at the

second and fourth harmonics were observed in analog
simulations [3(b),10,12]. By replotting the data of these

studies (especially of Ref. [10]) in a double logarithmic

scale one observes that on average the spectral density de-

cays practically like constxco, with the constant being

independent of the driving frequency, Q. The latter could

be checked by comparing data of Figs. 3(a) and 3(b) of
Ref. [10] at selected ro values, e.g. , tu =0.1 kHz. In ac-

cord with our analytical prediction, the dips vanish when
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the driving frequency is substantially lowered [10]. The
peaks at even harmonics were not observed, except for the
experiment with a I/f noise input [12]. Most likely,
colored noise can broaden the peaks, and thereby facili-
tates their experimental detection. Recall that in the
white noise situation the broadening of peaks requires
larger noise intensities. In this case the "background"
spectral density given by either Eq. (8) or by the in-
trawell constant D increases, so that the very existence of
the peaks is endangered.

We thus conclude that in the weak-noise limit there ex-
ists a broad window in the frequency spectrum with the
following unusual behavior of the spectral density. On
average, it decays like a power law and is insensitive to
the values of the driving frequency. The latter, however,
finds a way to show itself in a resonancelike manner by
"piercing" the universal power law by dips or peaks at
lower even harmonics. Analytically (and numerically)
peaks are also expected beyond the region of the power
law decay, but at present their experimental observation
at higher frequencies may be problematic, at least for the
white-noise case.
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