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We present a new method for optimization: constrained global optimization {CGO). CGO iter-
atively uses a Glauber spin flip probability and the Metropolis algorithm. The spin flip probability
allows changing only the values of variables contributing excessively to the function to be minimized.
We illustrate CGO with two problems —Thomson's problem of finding the minimum-energy config-
uration of unit charges on a spherical surface, and a problem of assigning offices—for which CGO
finds better minima than other methods. We think CGO will apply to a wide class of optimization
problems.

PACS numbers: 02.60.pn, 02.70.Lq, 41.20.Cv

Optimization problems are important in the physical
sciences [1,2], biological sciences [3],mathematics [4), and
operations research [5]. Current methods for approach-
ing optimization problems include Monte Carlo simula-
tion, analytic methods, symmetry considerations, and
the method of simulated annealing (SA) [5]. Here we
present a new method for optimization —the method of
constrained global optimization (CGO). CGO, like SA,
makes iterative use of the Metropolis algorithm [6]. CGO
uses a Glauber spin flip probability to ensure in general
that only those variables making excessively large contri-
butions to the function to be minimized are assigned new
values at a given iteration, while the values of the other
variables remain the same. SA changes the values of one
or more randomly selected variables at each iteration.

We first describe CGO, then illustrate its use on two
problems —Thomson's problem of finding the configura-
tion of unit charges on the surface of a sphere with min-
imum potential energy, and the office assignment prob-
lem (OAP) —for which CGO obtained better results than
other methods.

Description of the method of constrained global
optimization. —Let f be a real valued function of the
N variables xi, x2, x3, . . . , x~. We seek to find the values
of xi, . . . , x~ which will minimize f(xi, . . . , x1v). We de-
note (xi, x2, xs, . . . , x~) by x. The set of allowed values

of x may be infinite (discrete or continuous) or finite.
First begin with some randomly (or otherwise) chosen

initial values for the variables, denoted by xo. After this,
CGO consists of a three-step process which is iterated
some given number of times.

Step (1): Determine, for each variable x, , whether

x,"+ is to remain equal to x",. or to change to some other
value. Select a random number R, between 0 and 1. If

R, & 1/(1+ exp( —[g(x", ) —C]/kT))

then as described in step (2) a new value will be selected

for x, ; otherwise, x,
"

will remain equal to x", . In
Eq. (1) g is a real-valued function of x,', C is a real number

used for all x", for one iteration but which may change
each iteration; k is a constant (Boltzmann constant); T
is the "temperature" of the system. The right hand side
of Eq. (1) is the Glauber probability of a spin flip and

is derived by considering each x,"+ to have two states:
remaining equal to x", or not. Then by solving P +P~ ——

1, and P /P~ = exp[ —g(x,")/kT)/exp( —C/kT) for P~
we get Eq. (1).

We can consider g(x", ) to be an "energy" associated

with xI"+ remaining equal to x", , and C a threshold en-

ergy associated with selecting a new value for x~ . The(m+1)

choice of the function g and the constant C are problem
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dependent. For problems based on particle interactions
obeying a linear superposition principle a clear choice is
to take g so that f = P, i g(z, ). For problems in which

f is not derived from a superposition principle one should
attempt to choose g so as to divide the "cost" of f among
the variables. The value of C at a given iteration may
depend on the current values of the variables. In general,
increasing C decreases the probability that variables will

change values; decreasing C increases the probability.
Step (2): For each x", determined to remain unchanged

in step (1), set z,"+ = x", . For each z", determined to
change in step (1), choose a new z,"+ randomly from
the set of allowed values. The set of allowed values is
problem dependent. For example, certain problems may
limit the number of variables 2:, which can have the same
value. If this is true then special care must be taken in

choosing the (x,"+ ). One such procedure for doing this
is illustrated for the oKce assignment problem below.

Step (3): Calculate f(xI"+il) and perform the
Metropolis algorithm: If f(xI"+'l) ( f(x") then the
new arrangement is accepted. If f(xI"+ l) & f(x") then
the new arrangement is rejected unless a random num-

ber R which is selected is less than exp( —[f(xI"+il)—
f(x")]/T); if the new arrangement is rejected, x,"+ is

set back to x," for all i.
The three-step process is iterated a certain number

of times at a given temperature, and then the temper-
ature is lowered according to some annealing schedule
and the process iterated at that temperature. Eventu-
ally the temperature becomes so low that the values of
the variables fx, ) become frozen in.

Step (2) allows for potentially global rearrangements
of a system, but these arrangements are constrained by
step (1) which in general only allows those variables with
excessively large energies to change values. Also, rear-
rangements are ultimately limited by step (3), which in

general does not allow moves to values of x with larger
values of f CGO diffe. rs from SA in steps (1) and (2),
and shares the use of the Metropolis algorithm [step (3)]
with SA.

Thomson problem. —Consider N point charges on (the
surface of) a unit conducting sphere, interacting only

through their mutual Coulomb forces. What is the con-
figuration of the charges for which the Coulombic energy

i. +,. 1/[r, —r~[ is minimized. This question was

originally asked by Thomson for 2 & N & 100 [4], and
has since been investigated by many authors [2,7—10].
Somewhat surprisingly, it turns out that the configura-
tion of minimum energy is not the configuration which

places the charges at furthest distance from each other,
or the configuration of greatest symmetry. For example,
for eight charges, the configuration of minimum energy
is not a cube, but a twisted noncubic rectangular paral-
lelpiped [2].

For Thomson's problem, we take the function g in

Eq. (1) equal to g(r, ) =
2 Q. i +, 1/[r, —r~[. For
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those charges which change coordinates, we assign new,

spherical coordinates as e,
"+ = 8," + ill, vr, 6,

"+
+ re', 27' (r, = 1,Vi); here B, and R', are random

numbers between 0 and 1, g reduces the maximum angu-
lar change in proportion to the cooling schedule, and the
additions are done with the appropriate periodicity. We
use C = A max{g(r, )[i = 1, 2, . . . , N j with A = 0.7; the
results are not very sensitive to small changes from this
value of A. At each temperature step we consider 100
configurations (iterations); then we lower the tempera-
ture T used in Eq. (1), the Metropolis algorithm, and i7,

by a factor of 0.9, Finally, we use the final configura-
tion from CGO as input to a conjugate gradient descent
algorithm to reduce the energy as far as possible, using
double-precision arithmetic. We repeated the entire pro-
cedure from five difFerent starting configurations for each
number of charges.

Our results using CGO for 2 ( N & 65 confirm the
minimum-energy values found previously [7]. We find im-

provements in previously found minimum-energy values
for most values of N between 66 and 100. We list values
we believe to be the minimum energies for 66 & X & 100
in Table I.

For some numbers of charges the minimum energy ob-
tained by CGO is lower than that obtained by using SA

TABLE I. Values obtained using the method of constrained
global optimization that we believe to be minimum Coulombic
energies for Thomson's problem of N unit point charges on
the surface of a unit sphere.

N

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Energy

1882.441 525b
1942.122 700
2002.874 702
2064.536 066'
212?.100902 '
2190.649 906'
2255.001 191
2320.633884
2387.072 982b
2454.369689
2522.674 872b
2591.850 152
2662.046 475
2733.248 358'
2805.355876b '
2878.522 830'
2952.569675 "
3027.528 489'

N

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Energy

3103.465 124 '
3180.361443'
3258.213663
3337.002 643
3416.720 197
3497.439 019
3579.091 223 "
3661.713699
3745.291 636 '
3829.844 338
3915.309 270
4001.771 676
4089.154 010
4177.533 600
4266.822 464
4357.139163'
4448.350 634

Coordinates available; contact E.L.A.
Improves minimum-energy value found in Ref. [10], which

used symmetry considerations.
'Improves minimum-energy value found in Ref. [9], which
used a Monte Carlo method.

Prom Ref. [10]; CGO found 2662.047213.
'Improves minimum-energy value found in Ref. [8], which
used simulated annealing.
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[8], by Monte Carlo simulation [9], or by finding the con-

figuration of minimum energy with a given symmetry
[10]. In particular, these results demonstrate that the
symmetry of the configuration of minimum energy is not
always obvious a priori. The output from CGO is typ-
ically well within one-tenth of 1% of the final minimum

energy after applying the conjugate gradient, and this
performance of CGO relative to final minimum-energy
value does not deteriorate with increasing ¹ We think
that CGO will be readily applicable to other ionic and
molecular structure problems.

Once assignment problem. —Consider a set of N of-
fices whose centers are located at the 2D coordinates

(ri, rz, . . . , riv). These are to be occupied by N people
whose interactions —coefficients of angst —are denoted by
(a,~ [i,j = 1, 2, . . . , N). We seek to minimize the function

N

) . aV /Ir(i) —r(i) I

i,j=1;i+j
which one can interpret as the total angst of the system.
Here, r(i) is the location of the ith person's office, which
must be one member of the set (ri, rz, . . . , riv).

For step (1) of CGO, we take

1V

g(r(i)) -=A' = ) a'~llr(t) —r(i)l

which can be considered as the angst felt by individual

person i. We take C = Amax(A, [i = 1, 2, . . . , N) with
A = 1.2. (With a,z values as defined below, the results

degrade significantly for A above 2.0.) For this prob-
lem with g thus defined, step (1) of CGO ensures that
only people who are relatively "unhappy" with their ofI1ce

want to find a new office, while those who are happy with
their office do not want to move. For step (2) of CGO,
we permute those people who want new offices in a ran-

dom fashion: Choose a random number for each person
who wants a new office. Sort these random numbers, and
shadow the sort operations on their office assignments.

We consider problems with 20, 30, 40, 60, and 100 peo-

ple. We use random locations r, in the unit square, and
we choose the a,~ randomly between —1 and +1 with

a,~
= a~, and a,; = 0. We attempt to find the minimum

value of A using CGO and SA with the rearrangement

suggested by Lin and Kernighan [11]. For a given num-

ber of people we start both methods from ten difFerent

starting configurations. Both methods use the same an-

nealing schedule [12]. We try up to 100N arrangements
at a given temperature, stopping if 10N successful moves

occur at a given temperature. Then we lower the tem-
perature by a factor of Ti. At the Mth annealing step,
the temperature is T = Tp(Ti)M, where To is the initial
temperature. For the runs reported here, we use To and
T1 ——0.9; we anneal for forty annealing steps, at which
temperature the configurations for both methods were
frozen in.

TABLE II. Comparison of angst values for the ofBce as-

signment problem using the method of constrained global
optimization (CGO) and simulated annealing with the
Lin-Kernighan rearrangement (SA). N is the number of of-

fices, which is equal to the number of occupants. The column

labeled minimum" is the lowest value from ten runs using
diR'erent initial conditions; the column labeled "mean" is the

average of the ten values.

N
20
30
40
60
100

COO
Minimum

-9.4698
-45.4959
-29.3538
-77.9358

-144.8887

Mean

-9.2212
-40.1290
-26.8098
-73.6713

-139.8323

SA
Minimum

-9.1134
-41.9456
-20.2484
-63.2809

-108.6005

Mean

-8.5286
-36.8261
-19.3516
-60.3534

-100.4544

[1] R. Rafac, J. P. Schiffer, J. S. Hangst, D. H. E. Dubin,

We give results in Table II. CGO Finds significantly

lower values of A, both minimum and mean, than SA

using the Lin-Kernighan rearrangement. The CGO runs

take about two-thirds the computer time of the SA runs.

We have annealed up to 100 times more slowly for some

cases without altering the qualitative results of Table II.
The Lin-Kernighan rearrangement works exceptionally

well for the traveling salesperson problem (TSP), but ap-

pears to have difficulties for the OAP. For the TSP the
only relevant distances are those between a city and its

neighbors, while in the OAP a person must consider all

of the other people, not just neighbors. Perhaps, the
Lin-Kernighan rearrangement is optimal for the TSP be-

cause it allows consideration of changes in distances to
neighbors at the end points of a segment while leaving

distances for other cities unaffected. But for the OAP
changes in angst for people at the end points of the re-
versed or transported segment cannot be considered inde-

pendently of the changes in angst for other people. CGO
provides an effective method for moving unhappy people,
while leaving the happy ones where they are.

In conclusion, we have used CGO to improve known
values of the minimum potential for Thomson's problem
for many numbers of charges from 66 to 100. For the
office assignment problem CGO found signiFicantly lower

results than SA. We think that CGO will be applicable
to a wide class of optimization problems, especially those
with long range interactions.
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