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%'e construct a molecular model of an internal combustion engine, by coupling a Brownian ratchet
with an exothermic chemical cycle. We derive explicitly the thermodynamicaHy allowed couplings,
and show that almost every such coupling will result in motion. We compute from this formalism
the maximal transmission efficiency of Brownian gears.
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Cells have a service infrastructure, just like cities have
steam tunnels and subways and trucks delivering food to
supermarkets. There are several related aspects to this
infrastructure. Various substances have to be shipped
from the place where they are produced to the place
where they are needed. This involves transporting them
both within regions of the cells and across regions [1,2].
Within a region, transport is achieved, for instance,
through protein motors which walk on a complex and
dynamic set of highways (the cytoskeleton), and can pull
along vesicles containing those substances. The motors
consume energy-carrying molecules (adenosine triphos-
phate or ATP) to walk.

These motors are extraordinarily tiny: the motor do-
main of kinesin is about 12 nm across, about 50 times
smaller than the smallest transistor we can manufacture
on microchips. Their length scale and energy scale reveal
they are essentially Brownian machines. In this Letter, I
will try to outline a mathematical framework with which
one can describe how a Brownian machine can convert
chemical energy into mechanical motion.

A little over 30 years ago, Feynman described a Brow-
nian motor which has been the basis of many models

[3]. A paddle sits in a box with gas at a certain tempera-
ture and is subject to Brownian Huctuations. The paddle
is coupled to a ratchet device which, supposedly, should
"rectify" these fluctuations to provide motile power. The
ratchet sits in a box at some other temperature and can
itself random walk. Feynman shows that this contrap-
tion obeys precisely the formulas for a Carnot cycle, so
it is a Brownian analog of a steam engine. Since then,
several models formally related to the Feynman ratchet
have been applied to microscopic systems. Fox described
rotary molecular assemblers [4], Vale and Oosawa tried
to use a Feynman ratchet to describe protein motors
[5], Oster and co-workers studied polymerization ratch-
ets [6,7], Simon et aL understood protein translocation
across membranes [8], and Ajdari and Prost proposed a
setup for high performance chromatography by showing
that periodically turning a ratchetlike potential on and
ofF will generate transport [9]. Recently I observed that a
ratchet can rectify nonequilibrium fluctuations to gener-
ate motion, even if the fiuctuations are symmetric [10];I
argued this only for low frequency Buctuations, but Do-

ering et al. have made more detailed and rigorous studies
[11] which show the phenomenon to persist at high fre-
quencies, and which have also uncovered other very in-

teresting phenomena; Millonas and Dykman have intro-
duced powerful techniques for this case [12]. Stochastic
variants of the Ajdari-Prost setup have also been stud-
ied very recently [13—15], also in connection with protein
motor dynamics.

The setup in [10] did not quite present a full motor,
rather just one half of a motor; the relationship between
the nonequilibrium fluctuations and the fact that ATP
carries energy was not explored and this will be one
of my goals now. Protein motors obtain energy from
the degradation of ATP. The energy (about 12kT) is
stored in a phosphate bond, and is released when this
bond is broken, to form ADP (adenosine diphosphate)
and P, (inorganic phosphate). The motor continuously
"breaks" ATP molecules in a never-ending cycle, some-

what like a machine gun "breaking" bullets. First, we

just have the motor M; then an ATP is bound to the
motor, to get M x ATP; then ATP is hydrolized to get
M x ADP x P,', then the phosphate is released M x ADP
and then the ADP is released, so we get back to the ini-

tial state M. Different motors may operate with different

cycles and biologists have been painstakingly perform-
ing experiments to elucidate the details of the cycle for
each motor [16].

I have described this cycle as going one way. But we

know that all reactions are reversible, that reaction "ar-
rows" always go both ways; we also know that the quo-
tient of the forward arrow over the backward arrow equals
the exponential of the Gibbs free energy gained in the
reaction, divided by thermal energy. In a reaction like

ATP -::- ADP x P, , this quotient is approximately e~s

= 105, so drawing the arrow as going one way seems rea-
sonable. The other transitions are more delicate. The
power plants in the cell are constantly removing all of
the used ADPs and P;s, and supplying fresh new ATP.
If these energy factories were turned oK, then eventually

the concentration of ATP would drop to its equihbrium,
one ATP per e ADPs. However, under physiologic con-
ditions there are about 10 ATPs per ADP, and it is the
energy factories' job to keep it that way. So, the release of
phosphates and ADPs from the motor is an entropically
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favorable process because their concentration outside the
motor is being kept below equilibrium by 6 decades. The
chemical cycle loops one ioay as a direct consequence of
far-from-equilibrium concentmtions of the reactants in
volved; it loops in the direction in which the reaction
proceeds towards equilibrium.

A cycle which does not gain Gibbs free energy by go-
ing around will just random walk through the graph in
an unbiased fashion, and will generate Poissonian (time-
independent) events. A cycle which does gain free energy
will traverse the cycle in a specific sequence, and will

generate non-Poissonian (time-correlated) events. Con-
sider for instance two Markov graphs, A -::- B
C -::- A and A ~ B -+ C -+ A. Assume the first
one to be unbiased, so that it can move back and forth
with the same rates; it will generate Poissonian events
because there are many trajectories and each one sets a
time scale. The second graph accepts just one trajectory
and hence there is one privileged time scale, that for going
around the graph [17]. It is straightforward but tedious
to show by direct path counting that a cycle will gener-
ate Poissonian events if and only if the rates for going
around in each direction are balanced, i.e., if there is no
free energy gained by going around. If b,G g 0, detailed
balance is lost and the cycle generates time-correlated,
nonequilibrium fiuctuations.

So we have the ingredients necessary to build a motor.
The ratchet described in [10] is a little Brownian machine
that eats nonequilibrium fiuctuations and walks; a chem-
ical cycle is a little Brownian machine that eats chemical
energy and generates nonequilibrium fiuctuations. If we
glue them together, we get a machine which eats chemi-
cal energy and walks, a Brownian version of an internal
combustion engine, so molecular it "burns" one molecule
of "fuel" at a time.

But to glue these two machines we require a minimum
of care. We can remember that Kramers [18] described
chemical reactions precisely through Langevin equations
to derive the theory of chemical kinetics. Kramers only
described a single reaction event, but the adaptation to
a cycle spells itself out. Instead of a discrete state, we
will have a continuous "reaction coordinate" x, which,
for a cycle, must be a variable on the circle. We will
have a potential V(x) stating what the Gibbs free energy
corresponding to each value of the reaction coordinate is;
each minimum of the potential corresponds to a vertex on
the graph. However, as we go around the circle, we have
gained AG free energy, so that the potential is steadily
tilted. We have just mapped the chemical cycle to a
steadily tilted ratchet, as described in [10]; the Fokker-
Planck equation (FPE) associated to any such process
can be solved in double quadratures for any arbitrary
potential [17];the current J is given by

kT(e&T —1) v(~') —v(~)+&ac(~' —~)~1d
AG

eI xi

where e&T, = exp(x/kT) and e is the Heaviside step.

We have now to define the proper way to couple these
cycles. We have both cycles, mechanical and chemical,
described by an identical framework. Calling x the chem-
ical coordinate, and y the spatial coordinate, we have

x=f*(x y)+((t) y=f (x y)+X(t) (1)

where x, y c Si, (((t)((s)) = (y(t)y(s)) = 2kTb(s —t),
and (y(t)('(s)) = 0. (This is in essence a continuous

version of Hill cycles [19]; Astumian and Biers have in-

dependently argued for a similar description [13].)
We have thus a Langevin equation on a torus. As long

as we are on a small portion of the torus (i.e., the motor
is burning one specific molecule of fuel) we must uphold
the first law. This is done by requesting that the sys-
tem be locally conservative, i.e., that the vector field f be
curl free. The system ceases to be conservative on the
global scale (when we traverse a full loop of the chem-

istry), because consecutive cycles act by breaking dQfer-
ent molecules of ATP rather than the same molecule.

In Euclidean space the curl-free condition ensures that
the line integral of f around any closed loop is zero. On
the torus, this will be true in general only for those loops
which are homotopic to a point. There are loops which

go around the torus and do not cut it into two difFerent

pieces, and for these loops the integral will generically be
nonzero Mor. e technically, f is a 1 form io-hich is closed
but not exact [20]. What the curl-free condition does im-

ply is that the integral around a loop is the same for any
two loops which are homotopic; this integral is thus a
function of the homotopy class only. Homotopy classes
form a group generated by the two loops which go around
x and y (respectively) exactly once. The integral is ad-
ditive under the group operation, so it suffices to specify
this integral on the two generating loops to specify it for
all loops.

In order to model a motor moving freely under no ex-
ternal loads, the correct value on the two generating loops
must be set as follows. We do not have any bias in the
mechanical part, and therefore a loop going around the
mechanical cycle once and not around the chemistry (i.e.,
the motor slides one step without consuming fuel) must
gain zero energy Aloop g.oing once around the chemistry
and zero times in the mechanics has to gain precisely the
Gibbs free energy set by the chemistry. Thus, the in-
tegral of the vector field around any loop going through
the chemistry once will be the same regardless of whether
it advanced in space or not. This is an important self-
consistency fact of the formalism: the free energy gained
by burning fuel does not depend upon whatever hap-
pened mechanically, as it should, since this energy is a
function solely of ATP hydrolization energy and the con-
centrations of ATP, ADP, and P, and therefore should
not depend upon any mechanical variable.

What will depend upon the mechanics is the rute at
which the motor consumes fuel. Once we decide how to
couple the chemistry to the mechanics, then the curl-
free condition for the vector field determines uniquely
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the "backcoupling" from the mechanics to the chemistry.
Thus the state of motion of the motor determines how
fast fuel is being consumed, just like in a car's motor.
Any given model based upon this formalism predicts (and
is therefore obliged to fit) two measurements at once:
how fast the motor moves, and how fast it consumes ATP.

The general image of such a motor operating might be
that of dragging a particle through a periodic landscape,
with a force in a certain direction. If the mountains of
the landscape are lopsided, then the particle will show a
systematic drift in the transverse direction.

What we will be wanting to solve is the stationary
FPE:

V J=0, J =fP —kTVP,

where f is as above. What we want to compute from the
solution to this equation are the rates for going around
the mechanics (the average speed of the motor) and for
going around the chemistry (the mean hydrolization rate
of ATP). These are obtained as surface integrals: Given a
surface normal to the chemistry dimension (a loop around
the mechanics in this case), the surface integral of the
normal component of the current will tell us the rate of
ATP hydrolisis. Because the current is divergence-free,
these rates are independent of the surfaces in question
and only depend upon their homotopy class.

If for some given f there is a nonzero mean speed of
the motor, we have, effectively, transduction of chemical
energy into mechanical motion and thus a working mo-
tor. I will now show that almost any coupling will do;
of course, different couplings may have widely difFerent
efIiciencies.

The mean speed equals the integral of the y component
of the current along a loop in the x direction. Let us first
establish under which conditions this y component might
be strictly zero everywhere. Since

Jy ——f„(x,y) P(x, y) —kT8„P(x, y) = 0,

we see that P(x, y) can be obtained from P(x, 0) through
integration of a linear first order ordinary difFerential
equation (where x is playing the role of a parameter).

0

) p( 0)
f""s'f (*s')I"

Calling Q(x) = P(x, 0) and R(x, y) the exponential, and
remembering that 8 f„=8„f,we obtain

QIR QRfz(x)y) fx(xtO)
kT

so that the Fokker-Planck equation reads now

8 J = 8 [f (z, 0)QR —kTQ'R] = 0.

Evaluating this equation at y = 0, when A = 1, we
get that Q = P(x, 0) satisfies a one-dimensional Fokker-
Planck equation

8,[f (x, 0)P(x, 0) —kT8, P(x, O)] = 8,J = 0

which we can solve analytically; Jc = f (x, 0)P(x, 0)—
kT8~P(x, 0) is thus a constant. But then Eq. (3) can be
rewritten as

8 [f (z, 0)QR —kTQ'R] = 8 (J R) = J 8 R = 0.

Weknow J0$0 -::- AG$0; ifso, then8R=O,
wliich implies that 8~f„= 8ilf~ = 0. So the x and y
degrees of freedom are uncoupled. We have just proven
that if x and y are coupled, the y component of the cur-
rent cannot be everywhere zero. The mean speed of the
motor might still cancel out, since it is an integral of this
current.

This integral might cancel due to parity symmetry, or
perhaps due to an "accidental" cancellation. But this
integral is the same for every curve homotopic to a hor-
izontal slice, so accidental cancellations cannot be struc-
turally stable. Thus, as soon as we have symmetry break-
ing in space, almost every coupling between space and
chemistry (and a driving force along the chemistry direc-
tion) will produce a working motor.

But then we have to worry about the efFiciency of such
a motor. The most important theoretical result to be
obtained should be a maximal efIiciency calculation, in
the sense of Carnot. There is a trivial class of vector fields
for which this can be done explicitly. We can always write
the force field f as

f = VU(x, y) + (F, O),

i.e. , as the gradient of a potential plus a constant force in

the x direction. If U(x, y)—:V(ax by) wi—th a and b inte-

gers, and V(z) a periodic function, we have the Brownian
equivalent of two coupled gears, where V is the "shape"
of one tooth, and a and b are the number of teeth in

each gear. By applying a force to one gear we make the
other one move. It is evident that thermal noise will al-

low the gears to slide over each other, not unlike actual
engine transmissions coupling through transmission fluid

before the teeth actually lock. The 2D FPE for this po-
tential reduces immediately to a 1D FPE which can be
solved analytically, because the structure of the equation
requires that P be of the form P(ax —by), too. Calling
o. = a/(a~ + bz), the 1D FPE is

'7 J = (a + b ) ((V'+ aF)P —kTP') = 0

Ii = (V' + aF)P —kTP' is a constant which we can
compute as above. The total rates are

ab
R„ = J dx = F —bK.a2+ b~

The first terms are purely geometrical and classical; the
second terms are Brownian and represent the losses due
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to the ability of the gears to slide against each other. So
we have an explicit example on which to compute effi-
ciencies. The answer depends, as usual, on what is being
maximized, and this is something we have to keep in mind
whenever thinking of the "eKciency of a motor protein. "
For simplicity let us do this at kT = 0, since gears move
classically, but let us keep the motor terminology: ~ is
the rate of ATP consumption and R„ is the mean speed
of the motor. If we want to mmcimize the number of steps
per ATP (Rs/R ), then we should choose a/b -+ oo; the
motor moves an arbitrarily large number of steps per sin-

gle ATP, but R„-+0. If we want to maximize the speed

R„, then we choose a = b. If we want to maximize the
"stall load" (not present above but easily computable),
then we want b/a ~ oo. From this trivial example we
see very clearly that to speak about efficiency of motors
we have to define what is being optimized.

For less artificial cases, it is easy to see that when the
coupling between x and y is small we recover both the
ratchets of [9] and [10]. In this case we can write f =
—VV with V(x, y) = Vi(z)+Vq(y) —Fx+sW(x, y). So,

x = —8 Vi (x) + F —s8 W(z, y) + ((t),
y = —B„Vz(y) —eB„W(x,y) + y(t). (4)

Because for e = 0 there is no Js but there is a J2;, for
small e we can (to lowest order) neglect the influence of
y on x, and thus we have a unidirectional coupling from
x to y; since z is (on average) steadily increasing like
x —J~t, a function such as cos(z) looks like cos(J~t)
plus higher frequencies. Hence, if we have a coupling
like W(z, y) = [1+cos(x)]Vs(y), we recover a fluctuating
potential like in [9], and for W = cos(z + y) we recover
the forced ratchet of [10]. Since J~ is (for s = 0) a convex
function of F, the backcoupling would always increase the
rate of ATP consumption as expected. This argument
can be made precise through using a change of variables

z(z) = fz* P(z')dx', but the details are not interesting.
What I have presented is not a model of motor pro-

teins, but a framework for building models of a single
motor. The virtues of this framework are basically two.
First, many models in biology are stated in terms of what
the model does; this is rather disturbing since then we
cannot know whether the model works because of real
virtues or because of construction. Here, the model just
states the energy associated to all combinations of the
chemical and mechanical states, and what the model does
is obtained by solving the equations. Second, this frame-
work does by itself all the delicate bookkeeping of the first
law, which eliminates the possibility of a motor moving
by plain bootstrapping; i.e., perpetual motion machines,
no matter how subtly disguised, are forbidden.

The framework assumes a single motor. In order to
model several motors working together the proper proce-

dure might be to overlay the statistical analysis of Leibler
and Huse [16] on top of this single-motor analysis.

There are two implicit assumptions. First, that the
degrees of freedom of the protein are cleanly separated
into fast and slow; the latter (plus the chemical state)
form the phase space, and the former just dress the en-

ergy landscape. Second, the two-dimensional cases we

have formulated above can be extended to a higher di-

mensional space if the additional slow degrees of freedom
do not form a manifold with a non-Abelian cohomology.

I am deeply indebted to A. Libchaber, G. Oster, S.
Simon, C. Doering, P. Hanggi, D. Astumian, M. Biers,
and M. Millonas for many exciting discussions.
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