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Asymmetric Pumping of Particles
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Through the analysis of a simple two-level model, we show how and to what extent structures possess-

ing vectorial symmetry act as pumps in the presence of dissipation. The relevance to new separation

concepts and protein motor assemblies is discussed.

PACS numbers: 87.10.+e, 05.40.+j, 05.60.+w, 82.80.—d

Macroscopic average motion of particles result in gen-
eral from the action of macroscopic external forces or
gradients. In this Letter we describe a different mecha-
nism based on the combined action of spatial asymmetry
and energy dissipation. Consider a Brownian particle
evolving in a structure characterized by a vectorial sym-

metry (i.e., parity is broken along a direction x) but

homogeneous on large scales (for instance periodic or
random). Then we know from thermodynamics that the

long time motion of the particle is diffusive and sym-

metric: the sole violation of the x —x symmetry is not

su%cient to promote a net average velocity. However, if
an external action induces energy absorption and dissipa-

tion, then the time reversal t —t symmetry is also bro-

ken, and Curie arguments [I] allow for the existence of a

macroscopic velocity. It is important to note that dissipa-

tion can be forced on any degree of freedom of the parti-

cle, so that motion can result even in the absence of any
external force: this defines pumping activity.

The first presentation and quantification of this argu-
ment [2,3] concerned the proposition of a new separation
(or selective pumping) technique, making use of man-

made structures providing spatially asymmetric pinning

potentials that could be switched on and off periodically
in time. The net current resulting from the permanent
oscillation between two transient behaviors (during which

dissipation occurs) was calculated and shown to be highly

sensitive to the particle diffusion constant when the off
time was well chosen. No macroscopic gradient is ever

exerted on the particles in this scheme. A more obvious

case was subsequently investigated, corresponding to the

situation in which an external force is actually applied in

the x direction but with zero temporal average value

[4,S].
Dissipation can more interestingly be induced on inter-

nal degrees of freedom (conformational, electronic, etc. )
if the particles are susceptible to undergo a transition un-

der irradiation or take part in chemical reactions [2,3].
This case is very important on at least two grounds:
First, it could lead to pumping and separation devices

which would have the degree of selectivity of specific
chemical reactions (such as antigen-antibody recognition)
or that of optical resonances; second, it provides a para-

digm for the behavior of motor protein assemblies.
Indeed, there is presently a considerable effort aiming

at the analysis and comprehension of the mechanisms in-

volved in the latter biological function [6,7].
The motors (myosin, kinesin, or dynein), under the ac-

tion of a chemical energy source (ATP, adenosine tri-
phosphate), successively attach to and detach from a sub-

strate of vectorial symmetry (an actin or tubulin filament,
which acts essentially as a one dimensional periodic struc-
ture). Although "attached" and "detached" correspond
to complex and various underlying behaviors, an essential
feature for motion generation is the existence of these two
"states.

Therefore, we propose a simple model: a particle can
exist in two states, and in each of them it experiences a
different pinning potential. These two potentials have the
same symmetry but may be different in amplitude. The
external action (i.e., chemical reaction, optical transition,
etc.) simply drives the transition rates between the two

states away from their spontaneous values so that
Boltzmann equilibrium is perturbed. This forces dissipa-
tion and results in an average motion of the particle.
Note that such a one-particle treatment does not aim at
the description of collective behavior, nicely addressed in

Rer. [7].
In this Letter, after defining the model, we show on

general grounds how the asymmetry of the spatially
periodic pinning potentials results in an effective potential
exhibiting a macroscopic gradient, which implies a pump-

ing activity. Then we give analytical and numerical re-

sults for the cases of homogeneous or localized external
action, which exhibit the utility of a quasidetached state.
Eventually we discuss the relevance of our considerations
with respect both to possible separation techniques and to
the understanding of protein motor assemblies.

Let us consider the one dimensional motion along a

direction x of a particle which can be in either of two

states l and 2. The probability distribution functions of
the particle in states 1 and 2, Pi(x, r) and P2(x, r), obey
the following coupled Fokker-Planck equations:

t), P i + r)„J i
=s = —ro i (x )P i + r02 (x )Pq,

t)iP2+r)xJ& s = Coi(x)Pi ro2(x)Pp,
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in which the IIuxes Ji and Jq read

J, = D-, [P,(x)a.(W, /k T)+a„P,],
J2 = —D2[P2(x)8„(W2/k T) +a„P2] .

(2)

cF =J, +J = J)[P8„(%V/k T)—+8„P], (3)

where the effective diffusion coefficient is S =A, |D|
+k2D2 and the effective potential IV can be written

D i X|8„W|+D2128„W2

D...+D;,
+kT[ln(2))]a, (4)

where it is understood that A, i,A, 2, Wt, W2 are functions of
position. Indeed Xi and X2 have to be calculated from a
proper elimination of P in Eqs. (1) and (2); the result
clearly depends on the boundary conditions.

W&(x) and W2(x) are the potentials experienced by the
particle in states 1 and 2, respectively, which we take
periodic of period p, whereas roi(x) and co2(x) are the
transition rates between states I and 2. Expression (2)
insures that the Boltzmann distribution is an equilibrium
solution for each state separately. Under no external ac-
tion it is a global equilibrium solution so that roi(x)/
roy(x) =expj[W|(x) —W2(x)]/kT], and as stated in the
introduction there is no macroscopic current: 8 =Jl+ J2
=0 [since J|(x)=J2(x) =0].

What happens if roi (x)/&02(x) &exp[[Wan (x) —W2(x)]/
kTj? The transition rate from state 1 to state 2 (or vice
versa) may for instance be modified by irradiating the
particles with an electromagnetic wave of appropriate fre-
quency; in such a case the source s of the Fokker-P)anck
equations is modified by the addition of the new term
—alPi in which x. is the quantum yield of the photon ab-
sorption process, and I the wave intensity (for simplicity
we omit the stimulated emission term, which is quite ad-
missible in most cases). Note that, since x depends on

the energy difference between states 1 and 2, it will also
in general depend on the spatial coordinate x. It is im-

portant to understand that the photon source is external
to the system, and the photon population is not allowed to
reach thermal equilibrium. Under these circumstances
coi =coi+xI, where coi is the bare transition rate which
satisfies detailed balance, and al is a direct measure of
detailed balance breaking. Similarly a compound like
ATP which biases the rate of change from one state to
the other, through a hydrolysis process, will also drive
coi/r02 out of detailed balance, as long as its concentration
does not relax to equilibrium, which is the case in prac-
tice. In the following, we consider steady state situations
so that a local relation between the probability distribu-
tions in the two states exist: Pi(x) =A, l(x)P(x), P2(x)
=A2(x)P(x), where Pl(x)+P2(x) =P(x). It is then
straightforward to show that the total probability distri-
bution P obeys an effective Fokker-Planck equation with

a current:

If W(x) is periodic, the system acts as a passive
effective medium, with periodically distributed pinning
sites. On the contrary, if %(x+p)W'IV(x), the effective
potential develops a macroscopic bias, and the system
acts as a pump equivalent to that produced by an average
external force 7 = —['IV(x+p) —"IV(x)l/p. Depending
on boundary conditions the system develops either a
chemical potential gradient and no net current (blocked
situation) or a current with a constant average probabili-
ty distribution ("free end" case) or any intermediate situ-
ation. Note that even if the increment over a period
'IV(x+ p) —'IV(x) is very small compared to kT (in case
of rather "bad" pumping conditions), the accumulation
of N elements (typically 10 to 10 in a separation de-
vice) can lead to an overall significant chemical potential
difference in the blocked case: %[%V(x+p) —IV(x)]
&)kT. Note also that since A, l and A, i depend on bound-

ary conditions, the effective potential may be different for
blocked and free end situations.

From now on, we specialize to free boundary condi-
tions, in the sense that the probability densities (and con-
sequently Xl and X2) are taken p periodic, and we look for
the current d. A simple inspection of the integral part of
the right hand side of (4) shows that for symmetric pin-
ning potentials Wi and Wz, and (consequently if the exci-
tation is homogeneous) symmetric rates roi and co2, the
integrand is asymmetric and the effective potential "IV

is periodic. As expected no pumping activity can be
achieved: spatial symmetry breaking is a clear require-
ment. Similarly, if no dissipation takes place (no exterior
action), the rates coi and r02 must satisfy detailed balance:

oui (x)-ro(x) exp( Wz/k —T)
and

m2(x) =ro(x) exp( —Wi/kT).

Then the integrand is the derivative of

—k T 1n [D 1 exp( —W i/k T) +D2ex p( —W2/k T)]

and 'IV is periodic. The absence of dissipation forbids any
pumping activity.

A quantitative use of Eq. (4) requires solving dif-
ferential equations which do not admit analytic solutions
for arbitrary potentials Wi, W2. We have thus focused
our attention on two approaches: (i) An analytic one,
concerning the "sawtooth" potential of Fig. 1, under
"homogeneous strong excitation" conditions: the lifetime
I/co2 of the particle in the "excited" state 2 is taken con-
stant, whereas its lifetime in the "fundamental" state 1 is
inversely proportional to the amplitude 0 of the external
action taken constant in space, so that ro|=Q. (ii) A
computer simulation, based on a Monte Carlo algorithm
to solve the Langevin equations associated with Eqs. (1)
and (2), which allows us to analyze different potential
shapes and excitations. To complete (I) and (2) we
generically chose to set the "relaxation rate" co2 to a con-
stant "spontaneous" value, while the excitation rate con-
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FIG. 1. Three periods of the sawtooth potentials Wi, H'2.
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With the sawtooth potential of Fig. 1 and the homo-

geneous strong excitation conditions, Eqs. (1) and (2) are
piecewise linear with constant coeflicients, and can thus
be solved in a straightforward way. In view of the awk-

wardness of the resulting expressions we postpone their
derivation and presentation to a further article [8]. We
will here rather display a few curves corresponding to a
given choice of parameters: the asymmetry ratio a/b

1/9 (or a~p/10, b 9p/IO) common to the two po-
tentials (see Fig. 1), and the height of the barriers in the
fundamental state somewhat larger than the thermal en-

ergy Wi 10k T. The diffusion constants are for simplici-

ty taken equal D~ =D2 D. A few points corresponding
to numerical simulations are also displayed exhibiting
quantitative agreement with the analytical calculations.

In Fig. 2(a) the average velocity V induced by a given

homogeneous external action 0 (here 0 =1.85c02, the
value 1.85 is chosen close to optimal conditions discussed

below) is plotted as a function of the period p of the

structure, for a flat excited state Wz=0. Figure 2(b)
displays plots of the average induced velocity V as a func-

tion of the amplitude of the external action 0, for
different excited state potential W2 modulations. Two
observations can be made: (i) Increasing the potential
modulation in the excited states reduces the average
motion in a way compatible with a Kramers type of ex-

ponential decrease [=exp( —W2/kT)\, indicating the

pinning of the particles by W2. In fact the behavior is

more subtle when 8'2 is of order kT since the optimum

pumping conditions (V maximum) correspond to a slight-

ly negative value of Wz/kT rather than a flat potential

Wz 0. (ii) In both curves a clear maximum is observed.
A simple picture of the corresponding optimum condi-

tions is a particle in state 1 slides downhill toward the

corresponding well of the fundamental potential; as it ar-
rives in its proximity it is kicked up to the excited state
without loss of time, it then diA'uses almost isotropically
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FIG. 2. Lines: analytical caiculations (strong external action
regime); crosses: Monte Carlo simulations, obtained by averag-

ing over 1000 runs of at least 50 "1 2 1 cycles. " (a) Aver-

age velocity V as a function of period p; IVq 0. (b) Average
velocity V as a function of excitation amplitude rt (homogene-
ous case), for different values of fV2. (c) Average velocity V as
a function of excitation amplitude 0 (localized case); W2 0.
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in an essentially flat landscape over a length typically
larger than the small distance a, but smaller than the
large one b, before spontaneously returning to ground
state 1. With an appreciable probability the following
sliding step will take place in the neighboring cell on the
right (for the asymmetry choice of Fig. I ). Thus, a net
average current to the right is obtained. The fastest ve-

locity we get for our choice of a =p/10 is about a third of
(Droz) ' and a tenth of prinz.

Note that this picture is very close to the one developed
in [2,3]. Two adjustments of times (in the scaling form
p'/D=l/cuz and pzkT/DWi=l/0, the prefactors de-

pending on the asymmetry a/p) are needed to reach the
optimum conditions, which implies a high selectivity.
The resonant activation over a fluctuating barrier of Ref.
[9) appears as a particular case (when the barriers are
symmetrical) of our present approach.

We consider now the general case where 0 is a func-
tion of position. As we have seen, it occurs whenever the
transition rate excitation depends on W~(x) —Wz(x).
For instance, in the case of motor proteins, if the l-2
state difference was conformational, the change could
well be accessible only from particular points of the fila-
ment building blocks. It could further bc forced
artificially in the case of separation devices by using spa-
tially modulated intensities. A simple example of such a
"localized" external action is 0 (x) 08(x), where
8(x) I when Wi(x) ~ W~/100 and 8(x) -0 otherwise.
Then a plot of the average velocity as a function of the in-

tensity of the external action 0 saturates for large 0
[Fig. 2(c), Wz=0], instead of displaying a maximum as
in the case of a homogeneous external action [Fig. 2(b)].
This can be understood simply: To benefit fully from the
asymmetry of the potential W~ the lifetime in the ground
state must be long enough for the particle to slide down
an appreciable part of the slopes. A homogeneously large
0(x) kicks the particle too quickly back to state 2,
whereas in the case of a localized 0(x) this kicking pro-
cess occurs only when the particle has already drifted
down to the wells, and with a loss of time that reduces as
0 is increased.

This leads to a robust behavior in the sense that V is
rather insensitive to variations of A. Note that such a
saturation behavior seems typical of the plots of velocity
as a function of ATP concentration for motor proteins as-
semblies [6,7].

Let us eventually point out that another interesting sit-
uation is obtained when the two potentials, although of
the same vectorial symmetry and period, have their maxi-
ma shifted with respect to each other. Macroscopic
motion can then be obtained without diA'usion-controlled
steps, leading to eScient pumping when the energetical
barriers are high. This situation and more general ones

will be described in more detail in a forthcoming paper

To sum up, we have quantified, with the study of a sim-

ple two-level system, how vectorial symmetry plus dissi-

pation creates a macroscopic motion, even in the absence
of any externally applied gradient. W'e have shown how

dissipation, which can be provided by a chemical reaction
or by wave absorption (either electromagnetic or mechan-

ical), gives rise to an effective macroscopic driving poten-
tial. We have evidenced essentially two different behav-

iors: a selective or resonant one, for which optimum

pumping conditions exist, a robust one, in which the aver-

age velocity is fairly constant over a broad range of exter-
nal parameters. Note that the sole existence of an ener-

getically flat state is selective in itself.
Separation techniques could take advantage of either

of them. Extracting a single component from a compli-
cated mixture could use the resonant scheme, while

simultaneous separation of many rather similar species
could benefit from the monotonous variations of the ve-

locity in the second scheme. Motor proteins in the one
motor regime seem to share features with the robust pic-
ture: detachment is described to be fairly localized and
saturation of the velocity as a function of ATP concentra-
tion seems ubiquitous [6,7]. Our model allows for veloci-
ties of a fraction of the substrate period per attachment-
detachment cycle, which is compatible with experimental
data [6,7].

We thank J. Harden, L. Leibler, D. Mukamel, and J.-
L. Viovy for valuable discussions and help. We are
warmly grateful to A. C. Maggs and S. Leibler for intro-

ducing us to the field of motor protein assemblies. La-
boratoire de Physico-Chimie Theorique is associee URA
CNRS 1382.

[I] P. Curie, J. Phys. (Paris) Ill 3, 343 (1894).
[2] A. Ajdari, Ph. D. thesis, Universite Paris 6, 1992, Chap. 7.
[3] A. Ajdari, J. Prost, C.R. Acad. Sci. Paris II 315, 1635-

1639 (1993). For an experimental realization see J.
Rousselet, L. Salome, A. Ajdari, and J. Prost (to be pub-
lished).

[4] M. O. Magnasco, Phys. Rev. Lett. 7l, 1477-1481 (1993).
[5] D. Mukamel, L. Peliti, A. Ajdari, and J. Prost (to be pub-

lished).
[6] R. A. Walker and M. P. Sheetz, Ann. Rev. Biochem. 62,

429-452 (1993},and references therein.
[7] S. Leibler and D. Huse, C. R. Acad. Sci. Paris III 3I3,

27-35 (1991); J. Cell. Biology 121, 1357-1368 (1993),
and references therein.

[8] J.-F. Chauwin, D. Mukamel, L. Peliti, A. Ajdari, and J.
Prost (to be published).

[9] C. R. Doering and J. C. Gadoua r Phys. Rev. Lett. 69,
2318 (1992).

2655


