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Quantum Theory of Sobd-Liquid Coexistence and Interface in 4He
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We present a variational Monte Carlo simulation of soM-liquid coexistence and interface in He
at T = 0 K. We employ a new, generalized form of the shadow wave function in vrhich intershadow
correlations are made explicitly dependent on a local density operator. This form allows for a unique
representation of the ground state for the whole range af density extending over the two phases. In
the phase transition region the stable state consists of a slab of crystal coexisting with the Huis. We
obtain the local density, the order parameter, and the interfacial energy for the (100) surface of an
fcc crystal.
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The interface between liquid and solid 4He is a fasci-
nating quantum object. It has unique properties [1] like
melting-freezing waves and it makes possible the study
of the intrinsic mechanism of crystal growth [2] which
is very difficult to reach with other substances. More
generally it is an example of an inhomogeneous quantum
system, which is an area of strong current interest. The
liquid-solid interface of He is under active experimental
study [2] and important theoretical results [1] and pre-
dictions have been obtained on the basis of phenomeno-
logical models. On the other hand, the problem has not
been tackled by the microscopic many body theory or by
quantum simulations [3,4]. Path integral methods [5], in
principle, can be applied to this problem, but the dif-
ficulty lies in the large number of particles one should
use in order to obtain bona /de representation of the two
bulklike coexisting phases. The minimal requirements for
a many body theory of the interface are (i) that the Bose
permutation invariance between aII the particles be guar-
anteed, (ii) that the interface can move across the system,
and (iii) that the crystalline order parameter can change
continuously from the solid to the hquid value. All this
is completely out of reach of standard variational the-
ory [6] in which difFerent functiona/ forms of the wave
function are used for the liquid and for the solid. More-
over, for the solid phase, a priori equilibrium positions
have to be introduced. The recently proposed shadower

wave function [7] is interesting for this problem, because
a unique functional form describes both the liquid and
the solid phase and localization of particles only arises
via interparticle correlations and no wtplicit breaking of
the translational invariance has to be introduced. Yet
the problem remains that in the shadow wave function
the values of the parameters are density dependent, so
that they have difFerent values in the liquid and in the
solid.

In this Letter, we present the 6rst microscopic compu-

tation of the solid-liquid coexistence and interface in 4He

at T = 0, as a study of quantum efFects in the freezing
and melting phenomena. Our results are obtained with
a variational Monte Carlo simulation based on an exten-
sion of the shadow wave function in which the correlating
factors are made dependent on a local density operator.
We show that in this way a unique wave function can be
obtained which gives a realistic description of 4He f'rom

the equilibrium liquid density up to high density, well

inside the solid phase. In an intermediate density range
two distinct phases do coexist so that we can study the
interfacial region.

In the shadow wave function correlations between the
atoms are represented explicitly by pair terms and im-

plicitly via a coupling to subsidiary variables:

y(g)
—Q "~s (r'i )/2

where R = (rt, . .. , r~) and 8 = (st, .. . , s)v). In the
original ansatz [7] the pseudopotentials u are simple func-
tions of the displayed arguments (we indicate this by
taking out the hats) and, more specifically, u~(r)
(b„/r)s,u„,= Crz, and u»(r) = (b,/r)~', with b„,C,
b„and m, being variational parameters. Minimization
of the energy gives a density dependent set of parame-
ters. Here, we generalize the wave function by assuming
that the pseudopotentials depend on the local density
operator. For a particle at position r; we assume the
convenient form:

A =
g ) (1+exp[@(r't —r )l)

l

where A is the normalization constant.
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From previous computations [7] it is known that b, is
the parameter with the strongest density variation and
that freezing is to a large extent driven by the shadow
variables. In order to be as simple as possible we have
assumed that only u» depends on the local density of
shadows [8] as follows:

-3.. 0 ~ I I ] I ~ I I
t 1 i I ~

f
I i ~ I [ I I I 1

[
\ 1 1 I

&ss ~ij
&b +b '+' )

(3)
7 0 0

The parameters rn„b„,and C are taken at all den-
sities to have their optimal values at the equilibrium
density (b„=1.12o, 0 = 4o, and m, = 9, where
o = 2.556 A). The remaining parameters are determined

by the condition of a global minimization of the expec-
tation value e = (H)/N of the energy over the density
range p;„os= p,~mrs = 0.365 and p os = 0.55. The
values of y, and r, are not crucial as long as the range of
p, lies in between the first two shells of neighbors. The
resulting values are bo = 0.51o, bi = 1.9lo, p = 3o
and r, = 2.1o. In the Hamiltonian H we have used the
standard HFDHE Aziz potential [3].

This wave function, the local density —shadow wave
function (hereafter denoted as LD-SWF), is explicitly
symmetric in the particle coordinates and translation-
ally invariant. In the presence of density fiuctuations
on a scale of some interatomic distances, it adjusts the
parameters in a self-consistent way and it is therefore
suitable to describe liquid-solid coexistence in 4He. We
have tested the LD-SWF on the homogeneous systems,
and found that it reproduces almost exactly the equation
of state obtained when p; in Eq. (3) is replaced by the
average density. When N, the number of 4He atoms, is
few hundreds, the system exhibits two difFerent branches
of the energy, a liquid and a solid one, which are present
at low and high density, respectively. The obtained re-
sults are in reasonably good agreement with the optimal
results of Vitiello et aL [7], as can be seen in Fig. l. In
this figure we also report, for the sake of comparison, the
Green function Monte Carlo results of Ref. [3]. When N
is large (we have considered the range 1500—4000) there
exists a density interval in which there is coexistence be-
tween liquid and solid.

In this first analysis we were mostly interested in ver-

ifying the possibility of describing the liquid-solid coex-
istence. Therefore we have chosen a geometry as simple
as possible, that is, the (100}interface of an fcc crystal.
Results for other geometries will be given elsewhere. The
initial configuration consists of a given number of (100}
layers of the fcc crystal in the middle of a simulation box
in contact with random con6gurations on the two sides
along the z direction. Each layer of the solid accommo-
dates 32 particles. One Monte Carlo step (MCS) consists
of a sweep over all the particle and shadows degrees of
freedom, and periodical boundary conditions are applied
in all directions. Typical runs are of the order of 2.5 x 105

MCS, preceded by an equilibration of about 2 x 104 MCS.
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FIG. 1. Equation of state of He. Solid line: LD-SWF; cir-
cles: GFMC results from Ref. [3]; squares: SWF results from
Ref. [7]. The inset shows LD-SWF results in the coexistence
region.

Statistical errors have been computed from the variance
and the autocorrelations of the estimators.

During the simulation several physically relevant quan-
tities have been evaluated. First of all, we have consid-
ered global estimators, like the energy of the whole sam-

ple. The inset in Fig. 1 shows the values of the energy per
particle e obtained in the coexistence region for several
values of p,„[9].

The analysis of the interface has required the evalu-

ation of several other estimators measuring local prop-
erties as a function of z. One is the crystalline order
parameter, given by

N 2

O 'L ll~ 'I'I

t=1

with o, = x, y, z, n the corresponding vectors, N„the
number of particles in the vth layer, and a the side of
the cubic cell. 0„0„,. and 0, have been accumulated
for each layer v, with a layer width which has been taken
equal to the (100}interlayer distance. Figure 2 reports
the results for the longitudinal order parameter OL, = 0,
and the transverse one OT = (0, + 0„)/2. Figure 3
gives the fine scale density profile, defined as (p(z;)) =
(N, )/b, V, where b,V is the volume of a layer resulting
from binning the box in 800 bins in the z direction.

We find that when p~ o. falls in the range pyoa =
0.449+ 0.001 and p os = 0.456 + 0.002 the stable state
corresponds to an inhomogeneous situation in which part
of the system has crystalline order at density p and

part is disordered at density py, as can be seen in Fig. 3
[10]. The amount of the two phases depends only on p,
and is consistent with the so-called "lever rule": p
p cos (8) +

pepsin

(8). We have verified that we are
sampling an equilibrium state by starting from different
initial conditions corresponding to a difFerent amount of
solid and liquid: after equilibration, the amount of solid

phase is independent of the initial configuration. A closer
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FIG. 2. Longitudinal (a) and transverse (b) order parame-
ter as a function of layer position at pu = 0.452. Solid line:
particles; dashed lines: shadows. The two displayed results
for the longitudinal order parameter refer to different block
averages along a unique MC run.

analysis of the interface can be done following the motion
of the particles during the random walk. As we can see
in Fig. 4, the particles well inside the solid are localized
around the lattice site, even if they experience a quite
large motion. Going through the interface we can observe
a larger difFusivity, coming to a completely disordered
situation when we look at the liquid phase. This plot
shows the existence of an interfacial region 4—5 layers
wide.

We find one striking difference between the present re-
sults for a quantum system and the results [11]of simu-
lation of liquid-solid coexistence for classical particles: in
the present case the interfaces between liquid and solid
are very mobile. Taking block averages over 30000 MCS
we find that in a block the solid slab is located at a difFer-
ent position than in a successive block, and the solid can
be found in a region where previously the system was liq-
uid. An example of this is shown in Fig. 2. It is a clear
evidence of the actual indistinguishability of the parti-
cles, such that each particle is likely to be found either in
the liquid or the solid region. What remains essentially
constant during the simulation is the ratio between the
volume of solid and liquid. This mobility is absent in the
case of classical particles and it is suggestive that it is a
manifestation of the zero point motion of freezing-melting
density waves which is captured in our small system.

Many body correlations characterize indeed the quan-
tum systems, because the Jastrow function, which is of
the pair product form, fails in the description of the solid.
Many body correlations, as introduced by the shadow
variables, have an essential role in allowing wide local
motions of the atoms around the equilibrium positions,
while long range order is maintained. There is evidence
that these correlations are beyond the triplet level. In
the coexistence region the variation of the local density
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FIG. 3. Fine scale density profile at two difFerent densities
in the coexistence region. Solid line: particles; dotted line:
shadows.
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FIG. 4. Trajectory plot of particles projected on the y-z
plane, for layers in the interfacial region.

induces a variation of the local many body correlations
which then also dominate the interface. All this is absent
in the classical case where pair terms in the Boltzmann
distribution function are at the origin of freezing.

We have obtained a first estimate of the liquid-solid
interfacial energy by fitting the energies in the two phase
region as a function of the specific volume with a linear
formula:

t(V) = S(V ) COS 8 + 6(vf) Sin 8+
N

trItsC
2 2S

where S is the area of the z-y section, v and vy are
the melting and freezing specific volumes given by the
calculation. The fit gives tT;„q ——0.18j0.07 K/A. z. The
error is mostly due to the uncertainty on the values of
the freezing and melting densities. A similar estimate is
obtained by replacing s(v ) and e(vy) in Eq. (5) with the
average value of the local energy evaluated, respectively,
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in the solid and the liquid region of a two phase simu-
lation. Our result for the interfacial energy is consistent
with the value deduced from experiment [12]. However,
one should keep in mind two significant differences: ex-
periments refer to basal plane of the hcp crystal, and the

temperature is not low.
The equation of state given by our LD-SWF has an

anomalous behavior in the two phase region (see inset in
Fig. 1). The Maxwell construction based on the en-

ergies of single phase states gives pfMcrs = 0.407 and

p~o's = 0.467, quite different from the values 0.449 and
0.456 of the direct computation. Maxwell construction is
appropriate for an infinite system so a possible source of
the discrepancy is the finite size efFect. We can rule out
that this is important in our case because a computation
with a box twice as long gives essentially the same value
of vf v . On the other hand we have found that vf v

is much more sensitive than e(v) on the parametrization
of u„in Eq. (3). In fact, we have been able to choose
values of the coefficients bo and bi such that vy —v be-
comes substantially larger and closer to the value given

by the Mmcwell construction, with marginal changes in

e(u). Studies and simulations in classical systems indi-
cate that larger steepness of the repulsive force [13], as
well as the presence of an attractive tail [14], increases

(vf —v~)/v~. It is known [15] that a significantly bet-
ter representation of the liquid phase region of 4He is
obtained if the intershadow pseudopotential u„is repre-
sented by the Aziz rescaled function. On the basis of the
previous considerations its use should enlarge the two

phase region in this quantum system. In any case, we

have strong indications that the present results for the
interfacial energy and width and for the order parameter
profile will not be significantly changed by a more accu-
rate parametrization of u„(r).In fact, we find that these
quantities do not change in a significant way when the
values of bs and bi in Eq. (3) are changed as discussed
above. This implies that such quantities are to a large
extent determined by the mismatch between an ordered
and a disordered phase and not so much by how large is
the density discontinuity between the two phases.

In conclusion, we have shown that the study of the
liquid-solid interface of a quantum system is feasible
within the variational many body theory and we have

provided the first microscopic estimate of the interfacial
energy snd width. A specific quantum efFect is the high
mobility of the interface, but, at the same time, the in-

terface is quite well defined. These results are based on
an extension of the shadow wave function in which in-

terparticle correlations are introduced, which depend on
the local environment of each particle. We believe that
this approach can be useful in the study of many other
inhomogeneous many body systems, such as a Quid close
to a wall, the liquid-vacuum interface, or clusters. Some

exploratory studies [16] of clusters of He atoms have al-

ready given interesting results.
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