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A method for controlling spatiotemporal chaos in certain classes of spatially extended systems is
proposed. In these systems, unstable defects emit convectively unstable waves which subsequently
break and may nucleate new defects. Control is achieved via the stabilization of one such active wave
source, which then sweeps all of the chaotic fluctuations to the system boundaries. This method is
applied to the one- and two-dimensional complex Ginzburg-Landau equation, and to a recent model

of spiral breakup in excitable media.

PACS numbers: 05.45.+b, 47.20.—k, 82.20.—w

The control of the chaotic behavior of dynamical sys-
tems by weak systematic disturbances is a challenging
problem. Significant progress has recently been achieved
in controlling chaos in the systems with few degrees of
freedom. Small carefully chosen perturbations of an ar-
bitrary parameter of the system can confine the system
near a desired unstable fixed point or unstable periodic
orbit (see, e.g., [1]). This method has been successively
tested in a number of experiments [2].

The control of spatiotemporal chaos leading up to the
control of turbulence is a much more complicated but
also a much more important problem. Since in spatially
extended systems there is typically a very large number
of unstable degrees of freedom, a naive point of view is
that one always needs distributed control or at least some
dense lattice of controlling nodes. The suppression of
turbulent fluctuations via weak control at a single point
seems to be an obviously impossible goal.

In this Letter we show that there exists a very im-
portant subclass of spatiotemporal chaotic behavior for
which localized control is indeed realizable. In these sys-
tems, the mechanism of spatiotemporal chaos relies on
the existence of unstable topological defects which nu-
cleate spontaneously from an initially disordered state.
These defects act as active sources of traveling waves,
which themselves are convectively unstable. As the de-
fect fluctuates, it drives the unstable mode of the emitted
waves causing them to break. This then can lead directly
either to phase turbulence or to nucleation of new defects;
in both cases, the system never settles into a simple pat-
tern either spatially or temporally. This type of behavior
has been seen in simulations of the complex Ginzburg-
Landau equation in one and two dimensions [3,4] and in
a reaction-diffusion model of excitable CO catalysis [5].
Somewhat similar effects have been observed for a model
of waves in cardiac tissue [6].

The basic idea of our method can be stated as follows.
If one can stabilize one such wave-generating defect, the
outgoing waves will sweep all other fluctuations to the
system boundary. Hence, the extended system can be
synchronized over lengths £ ~ In(c)/v, where o is the
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residual noise level and v is a convective spatial growth
rate. Since these defects are exact solutions (albeit un-
stable) of the equations, this stabilization can be accom-
plished by weak perturbations applied near the defect
core. We will see explicitly how this works in the follow-
ing.

We note in passing that the control of strongly
anisotropic one-dimensional open-flow systems was con-
sidered recently in Ref. [7]. In that case control of the
spatially homogeneous state is straightforward: standard
techniques can be applied at one space location, and flow
will propagate this state throughout the system. Here
we are concerned with isotropic systems for which this
method would not work.

We start with the complex Ginzburg-Landau equation
(CGLE) [8] which is a model for any media near the
threshold of a long-wave oscillatory instability. Typical
systems modeled by this equation include transversely
extended lasers [9,10] and electrohydrodynamic convec-
tion in liquid crystals [11]. The CGLE takes the form

8 A=A+ (1+ib)AA - (1+ic)|Al’A (1)

and exhibits spatiotemporal chaos in a wide range of the
parameters b, c. Various types of defects have been found
as localized solutions of the CGLE. These defects are the
Nozaki-Bekki holes [12] in 1D, spirals in 2D [8], and scroll
waves (or vortex lines) in 3D. Stability limits of topolog-
ical defects, ranges of parameters corresponding to the
convective instability of plane waves, and the borders of
spatiotemporal chaos in the 1D and 2D versions of CGLE
have been studied in Ref. [4]. Following the general dis-
cussion given above, we work in a parameter range where
waves emitted by defects are convectively unstable and
defects themselves are also unstable due to a core insta-
bility [13,14].

In the 1D case, Nozaki-Bekki holes are stable only
within a narrow band the in b-c plane [13,15]; otherwise,
there is growth of some core-localized mode. In order to
suppress turbulence in CGLE we only need to stabilize
one hole in the bulk of the system by suppressing the
core instability. This can be achieved adding to the right
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hand side of Eq. (1) the term pf(r), where u is a complex
number and f(r) is an arbitrary localized form factor; in
our simulations, we used f(r) = 1/ cosh(ar). In the lin-
ear approximation the perturbed motionless hole can be
written in the form [13]

A= [ﬂtanh(m——;—%> +iBW(z — 130)]

r — X9

X exp [ikp In cosh( ) + iwt] ,  (2)
where k(b, c) is the asymptotic wave number, w = —c(1—
k?) — bk? is the frequency, and p(b,c) is the width. The
coefficient B is the amplitude of the unstable core mode
which has a functional form denoted by W [for definite-
ness W(0) = 1], and is characterized by the growth rate
A. In the presence of the control scheme, the mode am-
plitude is governed by the equation

B; = AB — §|u| sin[arg u — arg (A(z0))], ®3)

where § characterizes the response of the core mode to
the control. This equation is obtained by projecting the
CGLE onto the single mode subspace and using the fact
that B and X are real. We instantaneously adjust the
phase of u to satisfy argu — arg A(zp) = 7/2 and also
add a dynamic equation for |y,

[ule = y1]u|] + v2B. (4)

Note that the growth rate A typically does not exceed 1;
also, the value of the constant § can be calculated accu-
rately using perturbation theory [13,15], but for our pur-
poses the rough estimate 6 ~ 1 is good enough. There-
fore, one has the not very stringent conditions for the
coefficients 72 < —A\%2/6 , 71 < —A\ in order to make the
coupled system stable.

To verify this scheme, we performed numerical sim-
ulations with Eq. (1) in one dimension. We used a
high-resolution implicit split-step method based on the
fast Fourier transform, with (typically) 1024 collocation
points. The time step was chosen to be no larger than
0.05. The simulations also were checked by doubling the
space discretization. The results appear to be insensitive
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FIG. 1. Evolution of |A| (black = 0, white = 1) in 1D
CGLE with b = —2, ¢ = 0.8, and L = 300: (a) no control;
(b) the hole in the middle of the system is controlled since
t=20,v =7v2=-5.
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to the resolution of the numerical scheme.

The results are presented in Figs. 1 and 2. We con-
sidered the range of phase turbulence [3], b = -2, ¢
between 0.5 and 1.1, where the spatial-temporal chaos
is characterized by strong phase fluctuations and almost
constant amplitude. We chose the length | = 300 and
periodic boundary conditions. Eventually, the bound-
ary conditions are not too important because the stabi-
lized defect breaks the symmetry of the system by emit-
ting waves outward. In the periodic boundary conditions
emitted waves collide approximately in the middle, form-
ing shocks, whereas in other boundary conditions (e.g.,
no-flux) the shocks are typically formed near the edges.
A typical spatiotemporal chaotic pattern as it evolves
from small amplitude noise is shown in Fig. 1(a). As we
switch on the control in the middle of the system, a hole
is nucleated. Waves emitted by this hole sweep away the
turbulent fluctuations toward the shock, and one even-
tually has a perfectly synchronized steady pattern [see
Fig. 1(b)]. Clearly, the maximum domain which can be
synchronized here exceeds the system size. The time de-
pendence of the controller variable y and the amplitude
of the minima A is given in Fig. 2. The level of applied
control in the final state is very small, |u| ~ 10~5 - 106,
depending on the numerical precision of the simulations.

We also performed simulations to demonstrate the con-
trol of already developed chaos. Formally speaking our
considerations based on linear stability analysis fail be-
cause one has no well-established holes in the turbulent
regime. However, the control creates a hole relatively
quickly; in our simulations it took about 15 dimensionless
time units. If, however, the level of control is restricted
to below some value u., the probability of “locking” de-
creases. Moreover, in the range of phase turbulence small
values of |A| are very unlikely, and one needs the value
of u. to be above some threshold pg in order to force |A|

FIG. 2. Time dependencies of the magnitude of |A| at the
control point (a) and the control level (b); dashed line, single
precision in 1D; solid line, double precision in 1D; dotted line,
single precision in 2D.
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to actually vanish at the point of control. In the case of
e < po the system becomes fixed at some state, char-
acterized by u = p. and |A(ro)| = A(0) > 0. This state
also serves as a source of waves and may stabilize the
system. In the region of amplitude turbulence one may
expect the locking even for arbitrary small y., because
the probability that | A| is close to zero is finite, but in the
1D CGLE the range of convectively unstable amplitude
turbulence is very narrow.

The situation is similar in 2D. Here the defects are
sources of spiral waves

A(r,t) = [F(r) + BW(r,6)] exp{i[wt + m8 +9(r)]}, (5)

where 7,6 are the polar coordinates with the origin at
point 19, m = =1 is the topological charge, and F,vy
are real functions with the asymptotic behavior F(0) =
P(0) = 0,F(r)2 - 1 —k%4¢ — kr forr — co. B'is
the complex amplitude of the (unstable) core mode W.
When B = 0, we have an exact spiral solution with the
origin at r = 79. For topological reasons, the growing
mode of the core instability does not destroy the spiral,
but only shifts its core away from r = r,. Here arg B
characterizes the polar angle of the core of the shifted
spiral with respect to the point r9. Numerical simula-
tions show that without control this instability does not
saturate in the small amplitude meandering of the spi-
ral, but destroys the spatial coherence completely and
produces extensive spatiotemporal chaos [14]. Again one
can find an equation governing the evolution of B. In-
stead of Eq. (3) one has

|Bl¢ = ReA|B| — |6]|p| cos[arg u + ¢ — arg (A(ro))]. (6)

The control is achieved by forcing the spiral to drift to-
wards the point 7g so as to diminish the value of |B|. The
values of \, § = |6|e*® can be evaluated using the results
of Ref. [16]. In practice, || ~ 0.1, |§| ~ 1, and we choose
argpu ~arg A — ¢.

The parameters of our 2D simulations were b =
14.285,c = —0.6, which fall in the region of spiral inter-
mittency [14]. We now used either 128x128 or 256 x 256
collocation points. In the absence of control one has
bursts of turbulence separated by the nucleation of well
defined spirals [14]. It turns out that it is difficult to
achieve an effective control starting immediately from
small amplitude noise. Any defect which one attempts
to control attracts a neighboring defect of the opposite
sign, and they form a state with zero topological charge.
This state cannot be continuously transformed to a single
defect state. However, we note that after some transient
behavior large spirals (unstable) are formed. These spi-
rals emit waves which screen the core from perturbations
due to other defects. Applying control in the vicinity
of the core of a spontaneously nucleated spiral one can
easily obtain the desired locking. Because this procedure
is rather time consuming, we shortened the expectation
time of “big” spiral formation by introducing initial con-
ditions in the form of small amplitude noise plus a small

amplitude “vortex seed,” chosen in order to satisfy the
requisite topological condition. Once this is done, the
control suppresses the core instability and eventually pro-
duces a steady synchronized pattern similar to that seen
in 1D. The temporal evolution of the field (at the control
point) and of the control strength was given in Fig. 2.

In a recent set of experiments [17] on the catalysis of
CO on platinum single crystal surfaces, spatiotemporal
chaotic states were observed. Bar and Eiswirth intro-
duced a set of modified FitzHugh-Nagumo equations to
model this behavior [5],

Byu = Vu + f(u,v)/e, )
0w = D,V + §(u) — v, (8)

with the functions f = —u(u — 1)[u — (v + b)/a], and
§g=0foru<1/3,1-6.75u(u—1)?for1/3 <u <1, and
g = 1 for u > 1. This chaotic behavior does not occur
in more traditional excitable media such as the Belusov-
Zhabotinsky reaction [18]. As in other such reaction-
diffusion systems, there exist spiral solutions; in a wide
range of the parameters a, b the spiral core meanders [19)].
The chaotic state is due to the fact that this meandering
exists in the same parameter range as a convective insta-
bility of the emitted waves. The meandering excites the
unstable mode, the spiral arms break, and the system
becomes disordered. A similar behavior seems to occur
in models of wave propagation in cardiac tissue [6], due
to the coexistence of spiral meandering and an (almost)
period-doubling instability of the plane wave state [20].
We should note though that in the latter case, the insta-
bility can cause spatiotemporal chaos even in the absence
of meandering, in a parameter range where the emitted
waves become absolutely unstable.

We now add a term —puf(r — 7o) to the v field equa-
tion. For this system, the control y was governed by the
equation

Ot = mp + 2[v(ro) — vo. 9)

Here vg corresponds to the value of slow field at the cen-
ter of the spiral. The control is achieved due to the fact
that exactly at the spiral center v(rp) is constant whereas
any deviation from the center results in periodic time de-
pendence of v(rg). The resultant periodic oscillation of
p forces the spiral center to drift towards the point of
control. Eventually the center is pinned at the control
site, and the spiral emits the waves which suppress the
turbulence throughout the system (see Fig. 3). The sim-
ulations for this case were carried out by modifying the
v equation in the program Ez-SPIRAL by Barkley [21]. In
contrast to the case of the CGLE, the exact value of vg
is not known, and any mismatch in vy leads to a nonva-
nishing controller amplitude in the final stabilized state.
In order to overcome this difficulty, we started from some
arbitrary value of v providing stable locking of the spi-
ral [22]. Then we gradually decreased the value of vg
achieving as low as possible level of u. In practice, the
minimal value of 4 depends on a and for o = 1, p ~ 0.19;
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FIG. 3. Typical pattern of the slow variable v in the model
(7) and (8) without (a) and with (b) control (o = 2, vo = 0.4);
parameters of the simulation: a = 0.84, b = 0.07, ¢ = 0.08,
and D, = 0.1; system size is 30.

changing the value of vy past this point leads to a reemer-
gence of the original instability. This did not happen in
the CGLE and may reflect the fact that a pinned spiral
does not always smoothly return to the unpinned case as
the pinning strength decreases to zero. This behavior is
illustrated in Fig. 4.

In this Letter we suggested an algorithm for controlling
spatiotemporal chaos in isotropic continuous convectively
unstable media. Possible applications of our framework
include the stabilization of extended laser systems and
the prevention of the transition from ventricular tachy-
cardia (due to spiral-like rotating waves) to fibrillation.
An even more challenging goal would be to control chaos
in an absolutely unstable range. Simulations show that
in this case the core of the defect can also be success-
fully locked; however, outgoing waves do not eliminate
growing disturbances. At present, we know of no way to
obviate the need for having a (stabilized, if necessary)
array of active sources.
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FIG. 4. Control amplitude versus vo for different values of
the form-factor width a. Control fails to the left of the graphs.
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FIG. 1. Evolution of |A4| (black = 0, white = 1) in 1D
CGLE with b = —2, ¢ = 0.8, and L = 300: (a) no control;
(b) the hole in the middle of the system is controlled since
t=20,m =7 =-5



FIG. 3. Typical pattern of the slow variable v in the model
(7) and (8) without (a) and with (b) control (a = 2, vo = 0.4);
parameters of the simulation: a = 0.84, b = 0.07, ¢ = 0.08,
and D, = 0.1; system size is 30.



