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Energy versus Topology: Competing Defect Structures in 2D Complex Vector Field
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The topology of minimal orbits of the energy functional of a complex 2D vector field depends on
the sign of nonlinear terms breaking the SU(2) symmetry, giving rise to either lmearly or circularly
polarized states (LP and CP) which possess different sets of defects. The CP vortices have two
alternative core structures, with either vanishing amplitude or reversed polarization in the inner core.
In the LP state, there are two distinct topological charges. Vortices carrying two half-unit charges
have a circularly polarized core. Unit-charged vortices have a core with a vanishing amplitude, and
may sufFer a core instability splitting into a pair of half-unit-charged vortices.

PACS numbers: 05.45.+b, 03.40.Kf, 42.50.Lc, 47.20.Ky

The problem of nonlinear dynamics of a 2D complex
vector field arises most naturally in the context of non-
linear optics where the order parameter is the envelope
of the electric field of a polarized wave in the plane nor-
mal to the direction of propagation. Recently, Gil [1]
derived the Ginzburg-Landau (GL) equation with com-
plex coefIicients for a 2D complex vector order parameter
as a normal form equation near the lasing threshold. A
2D complex vector field can be also viewed as a two-
dimensional analog of the order parameter in the super-
fiuid sHe [2]. The model with a complex order parameter
has been used for the description of the superconducting
transition in UPts [3]. Another related system is cou-
pled nonlinear Schrodinger (NLS) equations appearing
in a number of applications to nonlinear waves in fiuid
mechanics and plasma theory [4]. Although the latter
system is not transparently geometric, it can be derived
from the vector equation in a straightforward way, as
shown below.

The subject of this Letter is the structure of defects
in the 2D complex vector field. The theorist's interest
to this problem may stem from the fact that, on the one
hand, it is not altogether trivial topologically, and, on
the other hand, it is sufficiently simple to obtain defect
solutions in an explicit form, and to observe directly how

energy considerations modify predictions of topological
theory.

Further on, I shall restrict to equations with real co-
efIlcients. The stationary states of a 2D complex vector
field are defined then as extrema of the energy functional

c(u) = / B,u %u*+ v(u) d~x. (1)

Here the asterisk denotes the complex conjugate, and
summation over repeated coordinate indices j = 1,2 is
presumed. The vector products in 8 are taken in such a
way that the vector and gradient components do not mix.
The simplest form of a potential that possesses required
symmetries to spatial rotations and phase translations
but breaks the maximal SU(2) symmetry is

V(u) = 2i (1 —u u')2+p(u u)(u' u') .

Stationary states verify the Euler-Lagrange equation

Vzu+ (1 —u u')u —p(u u)u' = 0.

(2)

(3)

Transforming to the null basis for the complex field

u = u+U + u U', where the vector U satisfies the nor-
malization conditions U U = 0, U' U = 1, brings (3)
to an alternative form

(4)

In the optical context, the basis vectors U, U" corre-
spond to circularly polarized states of the opposite sense.
At the same time, Eq. (4) is just a timeinde-pendent form
of coupled NLS, which seems to have no geometric mean-

ing, and is usually associated with counterpropagating
waves [4].

Further on I shall use a 4D polar parametrization of
the 2D complex vector field

8 i
u~ ——pcos —exp -(Q+ y),2 2

8 i
u = psin —exp -(Q —g).2 2 (5)

The angles 8, y can be identified as the polar and az-
imuthal angles parametrizing a sphere in the 3D space
spanned by the Stokes parameters z = [u+[2 —[u [2, x+
iy = 2u+u' . The advantage of this parametrization lies
in a simple form of the potential that makes the location
of its minima transparent:

V(u) = 2[(1 —p ) + pp sin 8). (6)

At p & 0, the minimum of the potential (6) is achieved
at one of the poles 8 = 0 or 8 = x, i.e., in a circularly
polarized (CP) state. At p ( 0, the potential (6) is at
minimum at the equator 8 = m/2. This is a linearly polar-
ized (LP) state characterized by the parallel orientation
of the real and imaginary parts of u [5].
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where P~ ——(Q + y)/2, respectively, at 8 = 0 (CPL)
and 8 = ~ (CPR). Stable topological defects are vortices
CPR+ and CPL+ with Py rotating by +2z, and kinks
with 8 rotating by m which separate domains with the
opposite sense of polarization.

In the inner core of the vortices, deviation from the
minimal stratum is necessitated by the need to relax
stresses due to the rotation of phases. As it follows
from the form of the potential (6), this can be done,
generally, in two ways: either by depressing the modu-
lus p or by pulling 8 to one of the poles of the Stokes
sphere [7). In the former case, the structure of the de-
fect core is the same as in a well-known scalar case, viz.
8 = 0, Py = P, p = pp(r), where r, P are polar coordi-
nates, and the function pp(r) verifies

Po + r Po+ {1—r Po)Pp = 0 {8)

with the boundary conditions pp(0) = 0, pp(oo) = l.
Since the amplitude vanishes at the origin, it is appro-
priate to call this a pnnched core structure.

An alternative way of regularizing the solution can
be interpreted as nucleation of a state with the oppo-
site sense of circular polarization and a nontopological
phase in the vortex core, and the resulting dissolution
of the vortex into a circular kink. At p = 0, the kink
would spread out indefinitely, and the circulation disap-
pear; this is, indeed, the surgery eliminating the defect on
the SU(2) group space. At p ) 0, the energetic costs of

Because of the symmetries of the problem, the minima
of the potential (2) or (6) are continuously degenerate,
and are achieved at a certain nunimal orbit that is defined
by the action of the symmetry group of the potential.
The residual symmetry corresponds to the little group of
the minimal orbit. The character and stability of defects
are determined in a standard way by the topology of the
little group [6].

Defects in a more general system with complex coef-
ficients were classified by Gil [1]. The topology is not
influenced by the fact that coefficients are real, and a
variational structure exists, but Gil's description of the
topology in a more complex LP case is not precise, and
will be corrected below.

At p = 0, SU(2) is the symmetry group of the La-
grangian; the minimal orbit is the entire 3-sphere p = 1,
and, as SU(2) = Ss is simply connected, there are no
topological defects. The minimal orbits in the CP and
LP states have difFerent topology, and we shall study the
structure of defects separately for both cases.

(a) Defects on CP background The .l—ittle group of the
CP state is O(2): the group of planar rotations and re-
flections. Its topology is that of two disconnected circles,
U(1) x Zz. There are two one-parametric families of "left"
and "right" stationary CP states:

CPL u = Upe'~+, CPR: u = U'pe'~-,

stretching the kink are prohibitive, and deviations from
the stratum 8 = vr should be confined to the vortex core,
The result is the reJiolarized core structure, alternative
to that of Eq. (8). For the CPR+ vortex with 8 = 7r and

= (Q —y)/2 rotating by 2vr, this structure verifies the
equations

// / / /8 + -8 —-p8-
r p

—p(8') ——p sin —+ p4 r~ 2
—p (1 + p sin 8) = 0,

1 2—&sin8 —pp sin28 = 0.
r (9)

6t//+ 8/ y 8 28 (10)r r2

The solution, that can be obtained numerically, exhibits
an inflection point within a linearly polarized transition
belt. The repolarized core is stretched at p &( 1 to the
size of O(p i/~), and the gain in energy relative to the
compact punched core structure is of O(lnp), but this
advantage is apt to disappear at larger values of p.

At p » 1, the loss of linear polarization must be con-
fined to an inner core region with a radius of O(p i/2),
and the structure in the outer core region with an O(l)
radius coincides in the leading order with the punched
core solution; thus, the distinction between both alter-
native structures disappears in this limit. The contrast
between both structures is most sharp in the opposite
limit p (( 1. Vortices with a repolarized core dissolve
gradually as their core radius diverges at p -+ 0. On the
contrary, the punched core structure remains compact
even at p = 0, and, since all defects become unstable
at p = 0 when the SU(2) symmetry is restored, it must
suffer a sudden instability as p decreases.

The instability threshold can be estimated by directly
computing second variations of the energy functional (1).
The most dangerous trial variation corresponds to the
excitation of the state with the opposite polarization
and a nontopological phase, that can eventually result
in transition to the repolarized core structure. If, say,
u = p(r) e'~U+ p(r) U', the potential energy is expressed
as —2ir fo p(r)z [1 —(1+2p)pzo(r) r dr. Since the inte-

grand changes sign only sufBciently far from the origin,
one can choose a trial function p(r) smoothly dependent
on the radius within some circle with the radius ro, and

vanishing outside. The value of ro should be chosen in

The asymptotic conditions are p(r) ~ 1, 8(r) x at
r ~ oo. Near the origin, the singularity is cancelled
when 8 approaches zero linearly (8 = ar at r + 0} with

any slope a, whereas p remains finite and p'(0) = 0. The
constant a, as well as the value of p(0), should be ob-
tained by matching to the asymptotic conditions when

Eq. (9) is integrated numerically.
The core structure is particularly simple at ]p~ &( l.

Then p = 1 —O(p), and rescaling the radial coordinate
r ~ r/~p yields, in the leading order, the equation of 8
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Since rotating Q by 2z. is equivalent to rotating y by the
same angle, the topology of the LP minimal stratum at
p & 0 is that of a torus upwith opposite points identified:
U(l)xU(1)/Z2. There are two topological charges, to
be called aryument and otimctor charges The. topologi-
cal defects are vortices LP(n, m) with @ rotating by 4nz
and g rotating by 4m'. where n+ m is an integer. The
eight elementary topological defects (Fig. 1) are argument
vortices and antivortices (n = kl, m = 0), director vor-
tices and antivortices (m = kl, n = 0), and two kinds
of depolarized vortices and antivortices (m = n = +z
and m = n= kz). —The reason for naming the vor-
tices with half-unit charges in this way will become clear
below. The identification of the opposite points in the
group space, that makes defects with half-unit topolog-
ical charges possible. was overlooked by Gil [1]. De-

(0 1)0
/i

/

/

FIG. 1. Eight elementary vortices on the LP background.
The abscissa and ordinate correspond to director and argu-
ment charges. Solid lines connect vortices that interact at-
tractively and annihilate at collision. Dashed lines connect
vortices that interact attractively and merge to another vor-
tex (closest to the line) when the lines collide.

such a way that the positive contribution to the kinetic

energy in Eq. (1) would not overweigh the decrease in

potential energy. One can obtain a lower estimate of the
stability boundary numerically by setting p(r) = 1 r—/ro
at r & ro, p(r) = 0 at r ) ro C. hoosing ro 4.5 max-
imizes the value of p at which the second variations of
the energy functional vanishes. Computations using the
numerical solution of Eq. (8) show that the punched core
structure is unstable at p & 0.17. This lower estimate can
be only slightly improved by choosing the trial variation
in the form p(r) = 1 —(r/ro)" with n & 1.

(5) Defects on LP backgmund. —The two-parametric
family of stationary LP states, parametrized by two in-

dependent phases Q and y, can be presented as

fects with multiple argument and director charges are
expected to be unstable to splitting into elementary vor-

tices, and need not to be considered here. We shall see,
however, that the same fate can await elementary vor-

tices that seem to enjoy topological protection.
The director and argument vortices are equivalent, re-

spectively, to rotations of a real vector or a complex
scalar. In both cases, the punched core solutions (8) with

p, = (1—
ipse)

i po(r) vanishing at the center of the vor-

tex are applicable. As in the CP state, these solutions
become, however, unstable at sufficiently small ipse.

Consider first the LP argument vortex. It can be
viewed as a rotation of a single orthogonal component of
the vector field if one chooses as basis vectors U+ = ioii,

U = ioii. The punched core solution Eq. (11) can be
presented as uo = U+p, (r)e'&. We choose the per-
turbation in the form u = pU . The second vari-

ation of the term iu uiz multiplying p is expressed
as f pz(r)p~cos2grdrdg, and vanishes if p depends
on the radius only. The remaining potential term is
—2z Jo p~[1 —pz(r)] r dr. Using the same estimates as
for CP vortices above shows that the punched core struc-
ture is unstable at lpi & 0.254.

The same estimate can be obtained for the director
vortex by choosing a somewhat difFerent orthogonal de-

composition

cosP . 1
u = uo+ u, uo = ps(r) ~ i u = 'ip

sin p

with real p(r) The se.cond variation of the term iu ~ ui
vanishes as above, and the stability limit can be esti-
mated exactly in the same way as for the argument vor-
tex, yielding the identical result.

When both @ and y are rotating, the punched core
structure is impossible, and linear polarization must be
lost in the vortex core. The regularization of the vor-
tex core is achieved when 8 approaches one of the poles
of the Stokes sphere. If @ = —g = kP rotate in the
opposite senses, the radial core structure p(r), 8(r) ver-
ifies Eq. (9), and 8 = ar, p'(r) = 0 at r ~ 0. Similar
equations apply when Q = y = +P rotate in the same
sense, and 8 = vr —ar with a indefinite, p'(r) = 0 at
r ~ 0. The asymptotic conditions determining the ap-
propriate values of a and p(0) are identical in both cases:
p(r) —+ (1 —

ipse) i, 8(r) ~ 7r/2 at r ~ oo. In both
cases, the inner core is circularly polarized with opposite
senses of polarization.

Another way to view the structure of depolarized vor-
tices is to consider the linearly polarized state as a mix-
ture of two circularly polarized states. The far field struc-
ture of a circularly symmetric depolarized vortex is given
by u = p+(r)e+'~U + p (r)U' when Q and y rotate in
the same sense, and u = p+(r)U + p (r)e+'~U' when
they rotate in the opposite senses. This means that only
one of the components rotates, while the other one has
no angular dependence. The amplitude of the rotating
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component has to vanish at the origin, while the other
one remains finite; accordingly, the inner core acquires
the circular polarization of the nonrotating component.

For the integer-charged argument and director vor-
tices, the stress is not relaxed at either pole of the Stokes
sphere, and the punched core structure is the only pos-
sibility. The surgery eliminating these defects requires
passing both poles consecutively. This is achieved when
the vortex splits into two depolarized vortices with op-
posite senses of circular polarization in the core regions.

Instability of CP vortices leads just to a change of the
core structure, with no change of topology. The insta-
bility of LP vortices must have more far-reaching con-
sequences. Since LP argument and director vortices do
not possess an alternative core structure, their instability
should lead to splitting into a pair of depolarized vortices.
While the total director and argument charges remain
conserved in this decay reaction, the separation of the
two splinters due to a repulsive interaction would spread
the topological restructuring into a large spatial domain.

(c) Vortex internctiona. —Dynamics can be defined,
starting from the energy functional (1), in two contrast-
ing ways:

ug ———6l:/6u' or ug —— i68/6u'. —

The first option is gradient dynamics, whereby energy
decreases monotonically in the course of evolution. The
second option means that energy is conserved (other con-
served quantities are densities and moments of two "su-

perfluid" components [4]). The structure of static defect
solutions is identical in both cases, but the way they in-

teract is totally different.
Far from the vortex core, deviations of p and 8 from

their constant asymptotic values corresponding to the
minimum of the potential are of O(r ), while the gradi-
ents of the phase variables @ and y are of O(r i). If the
distance between the centers of two vortices r = e i )) 1

is large compared to the core size, the force setting each
vortex into motion is determined, in the leading order,

by the local gradient of the phase fields of the other vor-

tex. In a diluted vortex gas, the motion is induced by
the gradient of the total phase fields of all other vortices.

Equations of vortex motion are obtained, using solv-

ability conditions of linearized equations in the core re-

gion, in the same way as for vortices in scalar fields [8],
and will be considered in detail elsewhere [9]. In the ease
of gradient dynamics, vortices move across a weighted

phase gradient, and the mobility relationship contains
a usual logarithmic correction. Attractive interactions
between the eight elementary vortices on the LP back-

ground are shown schematically in Fig. 1. The inter-
action vanishes for vortices bearing charges of di6erent
nature or for depolarized vortices with different sense of
polarization of the inner core (e.g. , n = —m =

2 and
n' = m' = z). In these cases, a weaker interaction due
to induced dipole moments at vortex cores, which de-
cays proportionally to the cube of the distance, can be
detected by continuing the expansion to O(P).

In the conservative case, the long-scale dynaznics of the
linearly polarized field corresponds, in the leading order,
to the fiow of two interpenetrating but noninteracting
incompressible superfiuids that advect vortices with re-
spective charges. A general case of Eq. (3) with complex
coefficient, that possesses neither gradient nor Hamilto-
nian structure, is far more complicated. Generally, one
should expect that vortices would radiate waves with a
certain wavelength, analogous to the spiral waves in the
scalar GL equation with complex coefficients [10]. In
addition to the usual punched core structure of a rotat-
ing spiral wave [10], one should expect also in this case
formation of alternative repolarized core structures. It
would be premature to discuss interaction of vortices in
this setting, as even for the scalar case has been studied
systematically only under very limiting conditions [11].
Only if the combination of coefficients is such that the
residual wave number vanishes, the dynamics is interme-
diate between the gradient and conservative cases, so that
vortices move at an oblique angle to the phase gradients.
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