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Spectrum of the QCD Dirac Operator and Chiral Random Matrix Theory
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We argue that the spectrum of the QCD Dirac operator near zero virtuality can be described by ran-
dom matrix theory. As in the case of the classical random matrix ensembles of Dyson we have three
different cases: the chiral orthogonal ensemble, the chiral unitary ensemble, and the chiral symplectic
ensemble. They correspond to gauge groups SU(2) in the fundamental representation, SU(N, ), N, ) 3

in the fundamental representation, and non-Abelian gauge groups SU(N, ) for all N, with fermions in

the adjoint representation, respectively. The joint probability density reproduces Leutwyler-Smilga sum

rules.

PACS numbers: 12.38.Aw, 11.15.Pg, 11.30.Rd, 11.55.Hx

According to the Banks-Casher formula [1], the spec-

trum of the Dirac operator near zero virtuality is directly
connected with a nonzero value of the chiral condensate;
the order parameter of the chiral phase transition. This

suggests that the spectrum in this region plays an impor-

tant role in understanding the mechanism of chiral sym-

metry breaking. Recently, it was shown that a nonzero

value of the chiral condensate leads to the existence of
sum rules for inverse powers of the eigenvalue of the

Dirac operator [2]. These sum rules are only sensitive to

the spectrum near zero virtuality and can be expressed in

terms of microscopic spectral correlation functions, which

measure correlations on the order of a finite number of
average level spacings [3,4]. As is well known from the

study of chaotic systems [5,6], such correlations are in-

dependent of the details of the interactions and can be de-

scribed by random matrix theory. Indeed, we [3,4] have

shown that for a complex Dirac operator all Leutwyler-

Smilga sum rules follow from a chiral random matrix

theory. This led to the claim that the microscopic spec-

tral correlation functions of the Dirac operator are uni-

versal.
More than three decades ago Dyson [7] found three

distinct types of random matrix ensembles: the Gaussian

orthogonal ensemble (GOE), the Gaussian unitary en-

semble (GUE), and the Gaussian symplectic ensemble

(GSE), corresponding to real, complex, and quaternion
matrix elements. The random matrix theory discussed in

[3,4] has complex matrix elements. For that reason it has

been named the chiral unitary ensemble (chGUE). This
raises the questions of what the chiral analogs of the
GOE and the GSE are, and what the structure of the cor-
responding Dirac operator is. The answer to these ques-

tions will be given in this Letter. We will also derive the

joint eigenvalue density of the random matrix ensembles

and present the result for the simplest Leutwyler-Smilga
sum rule.

The Euclidean Dirac operator in QCD is defined by

D—=i y„8„+y„A„,

where A is an SU(N, ) valued gauge field (N, is the num-

ber of colors). Because this operator anticommutes with

ys, in a chiral basis it reduces to the following block
structure

0 T
Tt 0

(2)

In general (for N, » 3), for fermions in the fundamental

representation, the matrix elements of the Dirac operator,
i.e., T~, are complex. This defines the first family of
Dirac operators.

However, in the case of SU(2) we have an additional

symmetry [2], which is specific to this group:

[c 'r 2K, D] -0, - (3)

where C is the charge conjugation matrix (y„=—Cy„
& C '), and K denotes the complex conjugation operator.
This symmetry operator has the property that

(C 'r2K) =1. (4)

As is well known from the analysis of the time-reversal

operator in random matrix theory [8], this property al-

lows us to choose a basis in which the matrix elements of
the Dirac operator in (2) are real and Tt T. This pro-
vides us with the second family of Dirac operators.

The third family of gauge theories are those with fer-
mions in the adjoint representation. The Dirac operator
is given by

Dk( =i y„t)„bk(+if y„At m i (5)

(c 'K)'= —
1 . (7)

This implies that each eigenvalue of the Dirac operator is

doubly degenerate with linearly independent eigenfunc-

where f"' are the structure constants of the gauge
group. As was noted in [2], in this case the covariant
derivative is real, and the Dirac operator is invariant un-

der charge conjugation

[D,C 'K] =0.
Because C*C ' = —1, one can easily derive that
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tions [8] given by

pi and C 'Epi.
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where the sum is over the nonzero eigenvalues of T.
Kith this choice the average spectral density does not de-
pend on P and is given by p(0) = I/ircr. This allows us to
identify cr=l/zp(0)=1/Z, where Z denotes the chiral
condensate. It should be pointed out that, as in the QCD
partition function, the chiral symmetry is broken isotropi-
cally in flavor space.

In order to derive the joint eigenvalue density we use
the eigenvalues and eigenangles of T as new integration
variables. In each of the three cases, up to a constant, the
Jacobian of this transformation is given by

(i 2)
k(1

As follows from a discussion by Dyson [9], in this case
the Dirac operator can be diagonalized by a symplectic
transformation. Or, in other words, the matrix elements
of T can be regrouped into real quaternions, and Tj Tj;
(quaternion conjugation is denoted by a bar).

The QCD partition function for NI flavors with masses

mi (mI 0) in the sector with v zero modes is defined by

r

mI iT
Zp „- STPp(T) ff det

l T N1I
(10)

where T has the symmetries of the corresponding Dirac
operator and the masses are in the chiral limit (mI 0).
For SU(2) in the fundamental representation T is real

(P 1), for SU(N, ), N, » 3, the matrix T is complex

(p 2), and for fermions in the adjoint representation, T
is quaternion real (P 4). In the latter case the square
root of the fermion determinant appears in (10). The
matrix T is a rectangular n x m matrix with ) n —m (

= v

(for definiteness we take m & n and v((n). It can be
shown that the matrix in the fermion determinant in (10)
has exactly v zero eigenvalues (and Z —+1mJ). The dis-

tribution function of the matrix elements P(T) that is

consistent with no additional information input is Gauss-
ian [10]. In a standard normalization we choose

Pii(T) exp
2cr k- l

where the average ( )q &~& is over gauge field con-
figurations with v fermionic zero modes weighted by the

gauge field action S„(A). The product is over all eigen-
values of the Dirac operator. For fermions in the adjoint
representation, the doubly degenerate eigenvalues count
only once (Majorana fermions) [2]. Relevant observables
are obtained by differentiation with respect to the masses.
The distribution of the eigenvalues of the Dirac operator
is induced by the fluctuations of the gauge field. It is our
claim that the correlations between eigenvalues near zero
virtuality, i.e., of the order of a finite number of level

spacings away from zero, do not depend on details of the
interaction.

The basic underlying idea of random matrix theory is

that correlations between eigenvalues on the scale of one
eigenvalue are only determined by the symmetries of the
system and do not depend on the detailed dynamics.
Therefore, the spectral density measured in units of the
average spectral density near zero virtuality is a universal

quantity that can be described by a random matrix
theory that reflects only on the symmetries of the Dirac
operator. The relevant random matrix theory in the sec-
tor with v zero modes is

The derivation of this result will be given elsewhere. At
the moment we only remark that the total powers of X,k

can be obtained on dimensional grounds only. The joint
eigenvalue density is therefore given by

nPK2/2gPi. $ (1 3)

The normalization constant is denoted by Cp„. In the
case of P 4, each of the doubly degenerate eigenvalues is

counted only once. This is consistent with the fact that
fermions in the adjoint representation are Majorana fer-
mions (see [2] for a detailed discussion of this point).
The simplest Leutwyler-Smilga sum rule in the sector
with v zero modes can be evaluated with the help of
Selberg's integral [11] (see [12] for a discussion). The
result is

(
1 g 1 PX

N'~ &0 t) I, &(pv/2+p/2+NI —1)
(i 4)

where the average is with respect to the spectral density

pp(A. i, . . . , A,„). The total number of modes is denoted by
N =m+n. This constitutes the final result of this Letter.
It agrees with sum rules obtained by Leutwyler and Smil-

ga for P 2 and P 4. This sum rule can also be ex-
pressed in terms of the microscopic spectral density
defined by

ps(x) - lim —p—1 x
W

where p(A, ) is obtained from (13) by integrating over all

eigenvalues except one. The microscopic spectral density
has been derived for P= I [13] and P 2 [4], and in both
cases it agrees with numerical results from simulations of
gauge field configurations by a liquid of instantons [14].

In [2] sum rules were derived from the static limit of
an eAective field theory. The above discussed triality im-

plies that we have three structurally different eAective
field theories. Two of them were analyzed in [2], and the

theory for P =1, which involves both baryons and mesons,
was discussed in [15]. It would be instructive to derive

(14) for P = I in the framework of this model.
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In conclusion, we have argued that, depending on the
gauge group and the representation of the fermions, the
QCD Dirac operator falls into three diff'erent families:
SU(2) in the fundamental representation, SU(N, ), N,) 3, in the fundamental representation, and SU(N, ) in

the adjoint representation. This triality corresponds to
real, complex, and quaternion matrix elements. Its spec-
trum near zero virtuality reAects only the symmetries of
the system and can be described in terms of chiral ran-
dom matrix theory: the chGOE, the chGUE, and the
chGSE, respectively. Sum rules obtained from general
arguments based on eff'ective field theory [2] are repro-
duced.
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