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Quantum wave function of a chaotic system spreads rapidly over distances on which the potential is

significantly nonlinear. As a result, the effective force is no longer just a gradient of the potential, and

predictions of classical and quantum dynamics begin to differ. %'e show how the interaction with the en-

vironment limits distances over which quantum coherence can persist, and therefore reconciles quantum
dynamics with classical Hamiltonian chaos. The entropy production rate for such open chaotic systems
exhibits a sharp transition between reversible and dissipative regimes, where it is set by the chaotic dy-
namics.
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The relation between classical and quantum chaos has
been always somewhat unclear [ll and, at times, even

strained [2]. The cause of the difficulties can be traced
to the fact that the defining characteristic of classical
chaos —sensitive dependence on initial conditions —has

no quantum counterpart: It is defined through the behav-

ior of neighboring trajectories [3], a concept which is

essentially alien to quantum mechanics. Moreover, when

the natural language of quantum mechanics of closed sys-

tems is adopted, an analog of the exponential divergence
cannot be found. This is not to deny that many interest-

ing insights into quantum mechanics have bees arrived at

by studying quantized versions of classically chaotic sys-

tems [4]. These insights have typically much to do with

the energy spectra, and leave the issue of the relationship
between the quantum and classical evolutions largely
open.

The aim of this paper is to investigate implications of
the process of decoherence for quantum chaos. Decoher-
ence is caused by the loss of phase coherence between the
set of preferred quantum states in the Hilbert space of
the system due to the interaction with the environment

[5,6]. Preferred states are singled out by their stability
(measured, for example, by the rate of predictability
loss—the rate of entropy increase) under the joint
influence of the environment and the self-Hamiltonian
[7]. Thus, the strength and nature of the coupling with

the environment play a crucial role in selecting preferred
states, which —given the distance-dependent nature of
typical interactions —explains the special function of the

position observable [5,7]. Coupling with the environment

also sets the decoherence time scale [8]—the time on

which quantum interference between preferred states
disappears [5-9]. Classicality is then an emergent prop-
erty of an open quantum system. It is caused by the in-

cessant monitoring by the environment, the state of which

keeps a "running record" of the preferred observables of
the evolving quantum system. For simple quantum sys-

tems the program sketched above can be carried out

rigorously, and yields intuitively appealing results [5,9,
10]. For example, preferred states of an underdamped
harmonic oscillator turn out to be its coherent states [10].

If decoherence does induce a transition from quantum

to classical, then it should be possible to utilize it in the

context of quantum chaos to establish a more straightfor-
ward correspondence between the behavior of classically
chaotic systems and their quantum counterparts. With
this goal in mind we will consider a chaotic system,
characterized by a potential V(x), coupled to an external
environment. Evolution of such an open quantum system
can be studied under a variety of reasonable assumptions
[11-13]. Here we focus on the simplest special case, the

high temperature limit of an Ohmic environment. In this

case, the Wigner function of the system evolves according
to [I I]

IV=IH g ]pa+ g ' t)z&+iVt)~" +'IV
i 2 "(2n+ I)!

+2ya„(pa)+Da2„W,

where y is the relaxation rate and the diffusion coefhcient

is D =2yMkaT (T is the temperature of the environment

and M is the mass of the system). The first term is the

Poisson bracket, which generates the ordinary Liouville

flow. Both the Poisson bracket and the higher derivative

terms result from an expansion of the Moyal bracket,

IH, W]Ma = —i sin(ih [H, W]pa)/h, which generates evo-

lution in phase space of a closed quantum system [this ex-

pansion is valid when V(x) is analytic]. The last two

terms in (I ) arise due to the interaction with the environ-

ment. The first of them produces relaxation —exchange
of energy with the reservoir —and the last one diAusion

(which is responsible for the decoherence process).
The failure of correspondence between quantum and

classical dynamics in a chaotic system is easy to under-

stand. Quantum correction terms in (I ) contain higher

derivatives. As a result the Wigner function does not fol-

low the classical Liouville Bow. In a quantum analog of a

classically chaotic system these nonclassical corrections

rapidly gain importance: %'hen a chaotic Aow is investi-

gated locally in the phase space, the evolution operator
can be expanded in coordinates "comoving" with a refer-

ence trajectory. The pattern of Aow of the neighboring

trajectories is then generated by the Jacobian of the

transformation. Eigenvalues of this Jacobian are known

as loca/ Lyapunov exponents X;, which must sum to zero,

since the transformation preserves phase space volume.
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Eigenvectors define directions in the phase space along
which the neighboring trajectories either only expand
(A, ; )0) or only contract (A,; (0) with respect to the fidu-

cial trajectory at a rate given by the corresponding
Lyapunov exponent [3]. The exponential contraction rap-
idly generates small scale structure in the %'igner func-
tion. Thus, the higher derivative terms are B~Wcx o~ "W
with o~ ~ az(0)exp(A, t), where A, is a Lyapunov ex-
ponent. Hence, nonclassical corrections will become im-

portant after a characteristic time t~ which can be es-
timated by comparing the magnitude of the nonlinear
corrections with the contribution of the Poisson bracket in

Eq. (I). Defining a characteristic scale for the nonlinear
terms as g„cx:(tl V/ll,"+' V) 't" we obtain that the nth or-
der term in (I) becomes comparable with the Poisson
bracket at a time j~" given by

t t"~ a: k 'In[@„e„(0)/ltt). (2)

Below we shall see that in the presence of decoherence
the regime in which the quantum corrections become im-

portant is easily avoided: Diffusive effects put a lower
bound on the small scale structure which can be produced

by chaotic evolution. As a result, err(t) can never become
suSciently small to result in large quantum corrections:
The classical Poisson bracket is an excellent approxima-
tion of the quantum Moyal bracket for smooth signer
functions. As we will also demonstrate, this interplay of
decoherence and dynamics has important consequences
for the rate of entropy production.

In our analysis, based on Eq. (I), we will neglect the
relaxation term which can be made arbitrarily small

without decreasing the effectiveness of the decoherence
process (e.g., by letting y approach zero while keeping D
constant [8]). In this way, we will focus on the important
reversible classical limit [7,8]. Models leading to Eq. (I)
break the symmetry bewteen x and p by coupling with

the environment solely through position. It is convenient
(especially in the context of quantum optics, where the
"rotating wave approximation" can be invoked) to use a
symmetric coupling (of the form afb+abt, where a and
b are the annihilation operators of the system and a mode
of the environment [l4]). The corresponding equation
differs from (I) in the form of the diffusion which is now

symmetric, ~D(8~~+8„)W. We shall alternate be-
tween using this symmetric diffusion and the more exact
diffusion operator of Eq. (I) in the discussion below.

To study the interplay between the evolution which

classically results in an exponential divergence of neigh-
boring trajectories (the characteristic feature of chaos)
and the destruction of quantum coherence between a pre-
ferred set of states in the Hilbert space of an open system
(a defining feature of decoherence), we shall use a simple
unstable system that still captures the essential features
we want to consider. In general, a chaotic geodesic Aow

pattern is locally analogous to the one occurring near a
saddle point, with stable and unstable directions defined
in an obvious manner. The simplest example of such a

W(u, i, t) = e
j2n~„'

—u 2/20
du W(u, a, t =0) .

(6)
The existence of the critical width cr, is a consequence of
the competition between the chaotic evolution (which at-
tempts to "squeeze" the wave packet in the contracting
direction) and the diffusion (which has the opposite ten-
dency), and leads to a compromise steady state —the
Gaussian written above.

How do these considerations lead to the three distin-
guishable stages of the evolution? The analysis of de-
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saddle point is aAorded by an unstable harmonic oscilla-
tor. In this case, the potential is V(x) = —Ax /2 (A. is

the Lyapunov exponent) and Eq. (I) reduces to a very

simple form. We will use the lessons learned from this
simple unstable system to argue that quantum correc-
tions, which in the case of the unstable oscillator vanish

identically, can be neglected whenever decoherence is

effective. Our analysis will also show that three diAerent
aspects of the evolution can be identified: (i) decoher-
ence, (ii) approximately reversible Liouville fiow, and
(iii) irreversible diffusion-dominated evolution.

To analyze in detail the unstable oscillator it is con-
venient to use contracting and expanding coordinates
defined by, ", =p T- Mkx. Evolution generated by Eq. (I)
causes exponential expansion in i and, without the
diffusive term, it would also cause an exponential contrac-
tion in u, so that the volume in the phase space (as well

as entropy) would be constant (see Fig. I). Expansion in

would also result in an exponential decrease of gra-
dients in that direction. Thus, after a sufficient number
of e-foldings the equation governing evolution of 8'would
be dominated by the expression

W =A, (u8„—vtl, , + —,
'

cr, 8„„)W. (3)
The characteristic dispersion, which will play an impor-
tant role below, is

cx2 =2D/X. (4)

The general solution of Eq. (3) can be found by notic-
ing that the eigenfunctions of the operator appearing in

its right hand side are v "F (u/rr, ), where F (x)
=exp( —x /2)H ~(x/J2) and H (x) are Hermite
polynomials. Expanding W(u, v, t ) in terms of these
eigenfunctions [whose eigenvalue is simply —(n+m)l,
we obtain

W(u, v, t) = g a„(ie ')"F (u)e '. (5)
n)0
m~ I

Therefore, the Wigner function depends on i only
through the combination vo = v exp( —Xt ), which is the
comoving coordinate. That is, along this direction, %just
expands. Moreover, after a few dynamical times the
most important contribution to (5) will always come from
the m=1 term. Thus, in the contracting direction the
Wigner function approaches a Gaussian with a critical
width cr, and has the form
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(c')

FIG. 1. Three stages of the evolution of an initially Gaussian
Wigner function shown in two different coordinate systems.
(a)-(c) W in physical coordinates (u, v, with i in logarithmic
scale). For an open system which evolves according to Eq. (I)
with V =Ex~/2 (forefront), the width of the distribution reaches
the asymptotic value o, . By contrast, when revolves unitarily
(densely hatched and shown in the back), it continues to
be squeezed in u. (a')-(c') The same three stages of the
evolution, but now in comoving coordinates [f=r exp(kt),
u =uexp( —At)]. In the unitary case (cross-hatched, in the
back) W' does not change. The interaction with the environ-
ment causes an exponential increase in the apparent width of 8'
(forefront). Since the width of the Gaussians in the expanding
direction is approximately the same, the asymptotic regime of
the diAusive evolution leads to an exponential increase of the
area enclosed in la contour. Consequently, the entropy in-

creases linearly at a rate determined by the Lyapunov exponent.

coherence follows simply. Nonclassical states possessing
a rapidly oscillating nonpositive 8' quickly evolve towards
a mixture of localized states resulting in a smooth and
positive Wigner function. For example, if the initial state
is a superposition of two coherent states separated by a
distance L (along u), the ratio between the wavelength of
the interference fringes I rx 1/L and a, is a„/I =(y/) )
x(L/Ada), where Ada is the thermal de Broglie wave-
length. Therefore, the decoherence time is [8]

rd„=y '(Xda/L)', (7)

which, for macroscopic scales, is much smaller than the
dynamical times even for very weakly dissipative systems.
Our analysis of the decoherence period is still incomplete
since Eq. (6) suggests that the negativity of the Wigner
function may persist along the expanding direction (in
that equation the initial state is not changed along ~ but
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ap'(0)
1+

g 2
—

1 exp( —2) )

Evolution of a classical distribution (corresponding to a
non-negative 8', initially smooth on a scale much larger
than a„and spread over a regular patch with A)) h) will

typically proceed in two different stages (see Fig. 2). The
first stage will be approximately area preserving with the
evolution dominated by the Liouville operator. It will last
as long as each of the dimensions of the patch is much
larger than the critical width. During this stage diffusion
does little to alter the form of O'. The signer function is

merely "stretched" or "contracted" by the geodesic How

so that, with respect to the comoving coordinates, "noth-
ing happens" to W. By contrast, when the dimension of
the patch becomes comparable with cz„diAusion will be-

gin to dominate. Further contraction will be halted at o,.
but the stretching will proceed at the rate set by the posi-
tive Lyapunov exponent. As a result, the area (or, more
generally, the volume) in phase space will increase at the
rate set by (9) with ap =a, . Using our approximate Eq.
(9) one can estimate the time corresponding to the transi-
tion from reversible to irreversible evolution:

just "stretched" by the geodesic How). However, Eq. (3)
was obtained by neglecting gradients along [. %'hen a
dilTusion term Dtl, , W is added to the right hand side of
(3), the eigenfunctions change in such a way that the
powers (ie "')" are replaced by Hermite polynomials

H, (i'/J2a, )e " '. This implies that the asymptotic form
of W is no longer given by (6), which just contains the in-

itial state expanded along the unstable direction. The
correct expression now contains a smoothed version of the
initial condition in which the details smaller than o,. are
washed out along the unstable direction. Again, oscilla-
tions with wavelength I cc I/L are destroyed after the
decoherence time (7).

The analysis of the reversible and irreversible stages
can be illustrated by following the evolution of a Gauss-
ian W. Here, the existence of o, is again very important.
The von Neumann entropy 'P of a Gaussian state can be
easily related to the area A enclosed by a ltT contour of
the AI'igner function. Thus 5' is a monotonic function of
A which, when A))h =2trh approaches /f=ktrlnA/h
[10]. Using the above equations, one can show that the
rate of entropy production is

'/t' =A/A =Ra„'/ap'(t), (g)

where ap(t) is the width of the Gaussian along the direc-
tion of p. So when az(t) approaches the critical value,
the entropy growth rate becomes equal to the positive
Lyapunov exponent X. Evolution of P can be analyzed
as follows: One can use (1) to show that the ratio
R=[ap(t)/a, ] evolves according to the equation
R =2k(l —pR) where p(t), which is related to the de-
gree of squeezing of the state, approaches unity exponen-
tially fast. Solving this equation approximately (using
p=1) one gets

l
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tie entropy production (although possibly with a signif-
icant change in dynamics [15,16]). This nearly constant
rate of (von Neumann) entropy production, a conse-
quence of the interplay between the chaotic dynamics of
the system and its interaction with the environment, sug-

gests not only a clear distinction between the integrable
and chaotic systems, but also shows that increase of en-

tropy in the context of quantum measurement and the
dynamical aspects of the second law are intimately relat-
ed and can be traced to the same cause: the impossibility
of isolating macroscopic systems from their environments.

0 s I

10
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FIG. 2. The rate of von Neumann entropy production for the
quantum open system. The initial state is a Gaussian for which

P(t 0)» I and with the initial width along the contracting
direction much larger than tr, . The (nearly) reversible and ir-

reversible stages of the evolution are clearly distinguished.

(10)

To apply these arguments to more complicated non-

linear systems we need to verify that the Wigner function

follows approximately the evolution generated by the
Poisson bracket [i.e., that the effect of the higher deriva-

tive terms in (I) is small]. As we pointed out above, in

the absence of decoherence the quantum corrections to
the evolution of W become important at a crossover time

tz given by Eq. (2). These corrections will remain small

when diffusion is strong enough to prevent formation of
small scale structure in W. Development of small scale
structure induced by the exponential contraction is

stopped after a time r, . Therefore, the condition for the
Wigner function to evolve classically is

which, taking into account Eqs. (2) and (10), can be
rewritten in the following suggestive way reminiscent in

form of the Heisenberg indeterminacy principle:

(12)

Thus, the scale of nonlinearities in the potential must be
larger than the coherence scale I't /o, on which the wave

function of the system can maintain quantum coherence
in spite of the coupling with the environment. This
condition —a key criterion to ascertain the correspon-
dence between quantum and classical dynamics —assures
that W follows the Liouville flow (albeit with diffusive
contributions).

We have demonstrated that chaotic quantum systems
can exhibit, in addition to the very rapid onset of de-
coherence, a nearly reversible phase of evolution which is

necessarily followed by an irreversible stage in which the
entropy increases linearly at the rate determined by the
Lyapunov exponents. By contrast, open quantum systems
with regular classical analogs continue to evolve with lit-
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