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From Labyrinthine Patterns to Spiral Turbulence
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A new mechanism for spiral vortex nucleation in nongradient reaction diffusion systems is proposed.
It involves two key ingredients: An Ising-Bloch type front bifurcation and an instability of a planar front
to transverse perturbations. Vortex nucleation by this mechanism plays an important role in inducing a
transition from labyrinthine patterns to spiral turbulence.

PACS numbers: 82.20.Mj, 05.45.+b, 47.54.+r
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where u and i are two scalar real fields. The model con-

Labyrinthine patterns provide a beautiful example of
pattern formation phenomena near equilibrium. Patterns
of this form have been observed in various gradient sys-
tems [I] including garnet layers [2], ferroIIuids [3], and
block copolymers [4]. Recently, Lee et al. found la-
byrinthine patterns in a bistable chemical reaction main-
tained far from equilibrium [5]. Unlike equilibrium sys-
tems, nongradient systems of this kind may undergo
nonequilibrium Ising-Bloch transitions [6-8]. Such tran-
sitions or bifurcations render stationary (Ising) fronts
unstable and give rise to pairs of counterpropagating
(Bloch) fronts. In this Letter we show the approach to an
Ising-Bloch bifurcation may induce a transition from )a-
byrinthine patterns to "spiral turbulence, " that is, a state
of spatiotemporal disorder with repeated events of spiral
vortex nucleation and annihilation.

Spiral turbulence has been found recently in reaction-
diffusion models of cardiac tissues [9-11]and surface re-
actions [12]. In both contexts wave-train instabilities
were found to precede the breakup of spiral waves into
new pairs of spiral ~aves. In this sense the resulting state
of spiral turbulence is reminiscent of defect mediated tur-
bulence in dissipative systems undergoing phase instabili-
ties [13]. Here we report a different mechanism for
spiral vortex nucleation that involves two generic front in-
stabilities: an Ising-Bloch front bifurcation, and an insta-
bility to transverse perturbations [14,15]. The front bi-
furcation provides the system with two coexisting Bloch
fronts. The transverse instability provides the driving
force needed to convert a segment of a Bloch front propa-
gating in one direction into a Bloch front propagating in

the opposite direction. This process nucleates a pair of
spiral vortices, one at each end of the segment. Such nu-
cleation events can be realized by approaching the front
bifurcation point from the regime of labyrinthine pat-
terns, for the latter already imply the existence of a trans-
verse instability.

%e study spiral vortex nucleation using a nongradient
reaction-diAusion model of the FitzHugh-Nagumo type:

tains four parameters: e & 0, the ratio between the time
scales associated with the two fields; 8» 0, the ratio be-
tween the two diAusion constants; and the two parame-
ters, a ~

& 0 and ao. %e choose ao and a] so that the sys-
tem (1) has two stable uniform steady states: a "down"
state (u —,t —) and an "up" state (u+, v+). Note that
for a0=0 the up and down states have the symmetry
(u —,v —) = —(u+, v+). This model has the interesting
property that for e»1 it can be reduced to a nonlocal
gradient system by eliminating t adiabatically [16].
Similar nonlocal models have been studied in the context
of' phase separating systems [17,18]. The regime e» I

has been studied most recently by Petrich and Goldstein
who derived heuristically a nonlocal equation of motion
for the front interface separating the up and down states
[i 9].

The Ising-Bloch front bifurcation for the system (1)
has been studied in Ref's. [8,20]. In the regime 8/e»1
and for a~ suSciently large, the speed c of a planar front
connecting the up state at x = —~ to the down state at
r =~ satisfies

3c +Coo,
J2q2(c2+4t)2q2) I/2

(2)

where rt =e6, q =a~+1/2, and c =3ao/J2q . In the
symmetric case (a0=0) a graph of c=c(ti) yields a

pitchfork bifurcation diagram. For g & rt, =3/2v 2q ',
c=0 is the only solution, representing a stationary Ising
front. For g & g„two additional solution branches ap-

pear, c = + 2qgti, —rt, representing counterpropagat-
ing Bloch fronts. Structurally, a Bloch front diA'ers from

an Ising front in that the v field is displaced with respect
to the u field. The magnitude and the sign of the dis-

placement determine the speed and the direction of prop-
agation, respectively. A useful rule to remember is that
the i field always lags behind the u field.

A typical form of the bifurcation diagram for the non-

symmetric case is shown in Fig. l. Front multiplicity
arises through a saddle-node bifurcation at a critical q

value, tt, (ao). We will refer to the single front solution

that exists for g & q, as an Ising front and to the two

stable front solutions for q & q, as Bloch fronts. With
this convention the Ising front and one of the Bloch fronts

0031-9007/94/72 (15)/2494(4) $06.00
1994 The American Physical Society



VOLUME 72, NUMBER 15 PHYSICAL R EV I E% LETTERS 11 APRtL 1994

d=a, (~)

4'=b, (s)

FIG. l. A front bifurcation diagram for the nonsymmetric
case, obtained from Eq. (2). Parameters used: ao= —0. 1,
0[ =2.

lie on the same solution branch. Note that the Ising front

is not stationary.
To study the transverse instabilities of the various front

solutions we consider a weakly curved front. Introducing
an orthogonal coordinate system (s,r) moving with the
front, Eqs. (1) assume the leading order form

u„+(c,+x)u„+u—u3 —v =0,
8 „t+( c+ Bx) v+ e(u —a ii —ap) =0.

(3a)

(3b)

The coordinate s parametrizes the front and c„(s,t) and

x(s, t) are, respectively, its normal speed and curvature.
Both c, and x may vary weakly along the front and evolve

slowly in time. Multiplying (3b) by the factor h(s, t)
=(c„+x)/(c, +bx) the resulting system can be interpret-
ed as equations for a planar front propagating at speed

e, +x' along the r axis in an effective medium character-
ized by the parameters 8 e'6 and b bh [21]. Using Eq.
(2) with c replaced by c„+x and rt by rt =rth we obtain

3(c,+bx)
c,+x= +C~.

J2q [(c +hx) +4t) q ]' (4)

Cp &oo 2a
a =1 — "

1
— - (c c)'—p oo

Cp

Setting d=0 for a given branch of cp gives the parameter
values at which the corresponding planar front becomes
unstable to transverse modulations. For the symmetric
case (au=0) the Ising and Bloch fronts become unstable
to transverse modulations when b & bt(e) =

s q e and

h & btt(c) =3/2/2q Ve, respectively The trans. verse in-

stability lines for the nonsymmetric case are sho~n in

Equation (4) can be solved for c„in terms of x. Since x
is smail we expand c, -co+dx+6(x ), where cu(rl) is

the speed of a planar front satisfying (2), and evaluate
the prefactor tI. This yields

d=a '+(1 —a ')b,

0.0

FIG. 2. The front bifurcation line (thick) and the transverse
instability lines (solid thin) for the nonsymmetric case, obtained
from Eqs. (2) and (5), respectively. The dashed line represents
the transverse instability of the unstable front branch (dashed
line in Fig. l). Parameters used: as= —O. l, a 2.

Fig. 2. Notice that the lines corresponding to the two

Bloch I'ronts, denoted by Btt , are not—degenerate as in the
symmetric case. Also shown in this figure is the front bi-

furcation line, g rt„which we write as b bF(e). For
the symmetric case BF.(e) 9/Sq e.

The front bifurcation line and the transverse instability
lines divide the e-8 parameter plane into regions where
diA'erent pattern behaviors are expected. In the Ising re-

gime, 8& bF(e'), and below the transverse instability line

of Ising fronts, b (bt(e), we find stationary stripe pat-
terns or, for 8 su%ciently small, no patterns at all. In the
Bloch regime, and below the transverse instability lines,
6' Bg—,traveling ~aves, including rotating spiral waves,

prevail [8]. We emphasize though that the bifurcation
and the transverse instability lines were derived for pla-
nar fronts and that curvature may shift these lines. In

particular, it is possible to have two appropriately curved
fronts propagating in opposite directions on the Ising side
of the front bifurcation line.

Figure 3 shows the time evolution of a stripe of up-
state domain well inside the Ising regime and ahorse the
transverse instability line, obtained by numerical integra-
tion of (I). The stripe is transversally perturbed in its
middle part and at first a meandering stripe forms. At
later stages, fingering and tip splitting processes take
place until a stationary labyrinthine pattern fills up the
whole system. An important characteristic of the final

pattern is that the up-state domain is connected. In this
parameter regime front speeds are relatively loe and 8
relatively large. Consequently, as two fronts approach
one another the diffusive damping of v is strong enough to
slow them down and eventually stop them at a distance
still large in comparison with the scale over which u

varies. Domain fusion is thus avoided. This behavior is

very similar to that observed by Lee et a/. in the bistable
chemical reaction [5] and to the simulations of Petrich
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FIG. 3. The development of a labyrinthine pattern from a

single stripe in the Ising front regime. The light and dark re-
gions correspond to the down and up states, respectively. (a),
(h), (c), and (d) pertain to times t = l00, 950, l900, and 5000.
Parameters used: ao —O. l, a~ 2, t.'=0.05, 8 4.

FIG. 4. The development of spiral turbulence from a single
stripe close to the front bifurcation line. The light and dark re-
gions correspond, respectively, to the down and up states. (a),
(h), (c), and (d) pertain to times t =30, 210, 1180, and l800.
Parameters used: a() = —O. l, a 2, a=0.0l4, 8 2.8.

and Goldstein [19]on their nonlocal interface model. We
note that the value of e used in producing Fig. 3 was

quite small (e 0.05). This suggests the gradient nature
of (1) for e)) 1 persists for smaller e values as well, ex-
tending the validity range of the nonlocal interface model.

Sufficiently close to the front bifurcation line, however,
nongradient effects become important. Figure 4 shows

the time evolution of a stripe in the vicinity of that line.
With this parameter choice both the leading and the
trailing fronts of the stripe (Bloch fronts pertaining to

upper and lower branches in Fig. 1, respectively) are un-

stable to transverse preturbations, but the instability of
the leading front is stronger. In contrast to the time evo-

lution shown in Fig. 3 the stripe breaks into disjoint
pieces which subsequently develop into a complex spa-
tiotemporal pattern. We have continued the simulation

up to t 5000 without finding any qualitative change.
The number of vortices appears to IIuctuate between 30
and 70. We point out, however, that Eqs. (1) always
have the two simple attractors, (u, t —) and (u+, t +),
and, in principle, further evolution might culminate in

one of them.
Figure S provides a closer look at the processes in-

volved in Fig. 4. Shown in this figure are the contours
u=0 (thick line) and v 0 (thin line) for four consecu-
tive time frames. The frames show a dent in a Bloch
front propagating to the right that turns into a Bloch
front propagating to the left. This process is accom-
panied by the formation of a vortex pair appearing as
crossing points of the two zero contours. The growing
dent eventually cuts the up-state domain into two disjoint
pieces in a process involving down-state domain fusion

and front reconnections. Domain fusion is made possible

at this parameter regime because of higher front speeds.
The rate of vortex nucleation depends not only on the

strength of the transverse instability but also on the oc-
casional formation of highly curved front regions. Such
regions are most often created by the fusion of two up-
state domains, yielding cusplike structures as shown in

Fig. 5(a). This geometry facilitates the diffusive accumu-
lation of v at a small region, thereby inducing a local

FIG. S. Vortex nucleation, developing from a cusplike front

shape, followed by domain fusion and front reconnections. The
thick (thill) litle 1S 8 u «0 (v ~0) contour. The light feglolls
correspond to the down state and the shaded regions to the up
state. (a), (h), (c), and (d) pertain to times t 310, 390, 460,
and 500. Parameters are as in Fig. 4,
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front transition and consequently vortex nucleation.
The simulations shown in Figs. 3-5 were obtained by

integrating the system (I) using an implicit finite dif-
ference scheme for the labyrinthine patterns and an expli-
cit scheme for the turbulent patterns. A 400X400 grid
has been used with one grid point per unit length. This
resulted in about six grid points across the front. Dou-
bling the resolution slightly changed the location of the
front bifurcation line but yielded the same qualitative re-
sults.

We have shown here that the coupling between an
Ising-Bloch bifurcation and a transverse front instability
in a doubly diA'usive FitzHugh-Nagumo model may lead
to spontaneous nucleation of spiral vortices. These nu-

cleation events, together with the capability of domains to
merge, can induce a transition to spiral turbulence. Simi-
lar behavior is expected to be found in other reaction
diff'usion systems exhibiting these two front instabilities.
A possible candidate is the bistable reaction studied by
Lee er al. [51.
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