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Giant Fluctuations of Local Optical Fields in Fractal Clusters
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Giant fluctuations of the intensities of local optical fields in fractal clusters are established, dependent
on a high g factor (low dissipation) of an optical resonance. We have shown that the tionlinear-optical
enhancement by fractals is due to these fluctuations and not to a high mean magnitude of the local field.
We have calculated the distribution function P(G) of a relative local-field intensity G and found a new
scaling dependence, P(G) ~G ', with the index s independent of an excitation frequency and dissipa-
tion rate.

PACS numbers: 78.20.-e, 42.65.An, 52.40.Nk, 6I.43.Hv

The optics of fractal clusters (called simply "fractals"
below) have attracted recently considerable attention
(e.g. , Refs. [1-7]).Fractals have been predicted [4,5] and
observed (e.g., Ref. [7]) to possess strongly enhanced
nonlinear optical responses, which are attributed to the
presence of very large local optical fields. A prerequisite
of the enhancement is penetration of an optical field into
a system, shown [1] for fractals with the dimension D
~ 2. The nonlinear polarizabilities studied provide only

a few average characteristics of enhanced local fields. No
direct information on the statistics of the fluctuations of
these fields is available. In this research we have directly
calculated the distribution function of local optical-field
intensities in fractals. This function is the most complete
local (one-point) characteristic of the local optical field.

A known approach to the fluctuation statistics in frac-
tals is based on the concept of multifractality [8], which

entails the analysis of the scaling of physical quantities
(fractal measures) averaged over some radius l. This
technique has never been used for the optical-field inten-

sity as a measure, although its application to the vibra-

tions of fractals has revealed a multifractal behavior [91.
However, optical responses in most cases can be con-
sidered as local. This is our rationale for considering in

this Letter the statistics of the local fields nonaveraged

over l. We have obtained a simple relation [see below Eq.
(5) and Fig. 1] between diff'erent moments of the local in-

tensity in the scaling region of frequencies, which sug-

gests the absence of multifractality for the local intensity

as a measure. However, this does not allow one to ex-

clude the possibility that, averaged over some radius I,
the intensity can be multifractal. This is due to the fact
that the calculation of an nth moment of the averaged in-

tensity invokes nth-order correlations for intensities at
diAerent monomers.

%e consider a cluster as a fractal set of A particles
(monomers) with dipolar interaction between them deter-
mined by the complex linear polarizability go of the iso-

lated monomer. %e define Z=go ', X=——ReZ, and
8= —ImZ. In the theory, L plays the role of a natural

spectral variable (X 0 corresponds to the surface plas-

mon resonance of the monomers), and b & 0 describes the
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FIG. l. Normalized moments lG")bg '" ' as functions of
%for CCA (a) and DCCA (b) for the values of n and b'shown.

dielectric losses. A typical distance between monomers
(-size of a monomer) Ro-50-100 A is much less than
the radiation wavelength X (see, e.g. , Refs. [61 and [7]).
As for the total radius R, of a cluster, we assume that
Ro&(R, (&A, , so that the amplitude E ~ of the exciting
wave is the same on all the monomers. Experimentally
[6,71, the radius R, ranges from hundreds of angstroms
to a few microns. Even if R, & k, only the interaction of
monomers within a sphere much smaller than X is impor-
tant [10], so that the above assumption about E is still
valid for all monomers interacting with a given one. For
simplicity of presentation, we set belo~ R0=1.

The amplitude F; (i =1, . . . , /V, and tt =x,y, z) of the
local optical field is a random vector function of the
monomer number i due to the spatial inhomogeneity in-

trinsic to fractals. %e introduce a 3A'-dimensional vector
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b'('jbpji 3(r(j )p(r(j )p]r(j i &j
(ia i Wl jP

,0, i=j„
where 8' is the dipole-dipole interaction operator and

r;~ =r; —r~. For both analytical and computational pur-

poses, it is convenient to express the solution of Eq. (I) in

terms of the eigenvectors )m) of W and the correspond-
ing eigenvalues w~ (m = 1, . . . , 3N). Having done so, we

obtain [2] the local field at the ith monomer, E;, and the
polarizability tensor of this monomer, g ', as

Z (i)p (0)

g,'Ii -g (ia)m)(jP[m)()v X—ih—)
m,J

(2)

The linear polarizability of the cluster per monomer,
g=(3N) '(g;g, ', ), scales as Imp-(X( ' in the col-
lective spectral region [2],

b N "" '"" "'«iXi«1 (3)

where D is the fractal dimension and do is the optical
spectral dimension, 0 & do ( l.

W'e introduce the relative intensity of the local field at
the ith monomer, G;, and its distribution function, P(G),
as

N

0 (~ )')IE(')I' p(G) -(IV p b(G G ))
i l

(4)

where the averaging is taken over the ensemble of all
clusters. We note that P(G) depends on X as a parame-
ter. We will show that there exists a region of G where
P(G) scales, and that the moments of P(G) are deter-
mined by the large-G tails of this function outside this
scaling region.

The moment (6") fP(G)6"dG (n = I, . . .) is the en-
hancement factor of incoherent nth-order optical excita-
tion. As shown in Ref. [2], an exact result ("optical
theorem") is valid, (6) =(X2+82)b ' Imp. Yery similar
to the derivation of the enhancement coefficient G "s of
the Raman scattering [6], one can show that in the region
of Eq. (3) (62)-X"8 3img. Comparing (G) and (G ),
we conjecture for an arbitrary n that

(6")-Q " ' (G)-Q "birn@ (5)

where Q=—)X)/b' is the quality factor of the optical reso-
nance in the monomer, which is large, in particular, for
many metals in the visible-ir region.

Substituting (X(—I, the maximum enhancement fac-
tors can be estimated from Eq (5) as (G. ")I,. „-Q "
and (6")~.,„&&l for n~ I. This estimate implies rhat
most of the nonlinear enhancement stems from very large
fluctuations of the local field intensities an-d nor from

(E) with components (ia~E) =E;„and similarly for other
vectors. Then the equation for (E) acquires the form [2]

lE) =~Eton') —z

their high mean magnitude . In fact, if there were no

fluctuations, then it would be (6"),„-(G)",. „-Q"and
(6")~.,„&&Q

" ' for n & l.
We have carried out numerical simulations using four

types of fractal clusters: random walk (RW), diluted
random walk (DRW), cluster-cluster aggregates (CCA)
[11,12], and diluted CCA (DCCA). Diluted clusters
have been generated from the original RW and CCA
clusters by the decimation algorithm [2]. Briefly, each
monomer of the original cluster is removed from the clus-
ter with the probability I

—P, where P« I is the fraction
of monomers left. Finally, all clusters are rescaled to ob-
tain Ro=l. A diluted cluster models a collection of
monomers obtained by a random doping of a fractal net-

work, say, a fractal polymer. The dilution (decimation)
does not change the fractal dimension of the cluster, D
(thus, D=2 for RW and DRW, and D=1.75 for CCA
and DCCA), but does simplify its structure at the
minimum scale. Numerical calculations include 1000
clusters of each of the four types, with each cluster con-
taining N =100 monomers (control calculations with

N =75 give practically the same results).
The scaled enhancement factors (G")bQ t" '1 (n

=1,2, 3) for CCA and DCCA are shown in Fig. l. In the
collective (scaling) region (3), these quantities should be

equal to X Imp(X) and, consequently, should have a
universal dependence on X and should not depend on ei-
ther n or 8, provided Eq. (5) is valid. Supporting Eq. (5),
in this region the curves for diA'erent n and 8 coincide, ex-
cept for the case of n=2 and 8=0.01, where the curve is

parallel to the rest of curves. The latter is attributed to
b'=0.0l not being small enough for the given n=2. Out-
side the region (3), Eq. (5) fails dramatically.

In accord with Eq. (5), the universal behavior of curves
in the collective region (3) of Fig. I should be scaling
with an index equal to 1+do. From this we find d()
= —0.02 for CCA and do=0.64 for DCCA. Indepen-
dently, we find from our computations of Imp (data not
shown) that d()=0~0.02 for CCA and do=0.71 ~0.02
for DCCA, in reasonable agreement with the above
values. The fact that the curves in Fig. 1 for all moments
are close implies strong enhancement for higher moments
and, consequently, for higher-order nonlinear photoexci-
tation. For example, for silver in the red region [6],
Q-30. Therefore, (G"+ )/(G")-Q —10, i.e., there
are 3 orders of magnitude of the enhancement for each
successive power n of nonlinearity.

We now consider the form of the distribution function
P(G) of Eq. (4). The scaling behavior of Eq. (5) and

Fig. 1 implies that the moments of G for n ~ 1 are princi-
pally determined by the far right wing of P(G) The.
structure of Eq. (5) suggests that in this wing 6 & Q and
P(G) and P(G) &blmg. Another characteristic point is

G =1, in whose vicinity the intensity of the local field is
close to that of the external field. In the intermediate re-
gion, 1 «6 «Q, there is no characteristic field to com-
pare to the local field. Therefore, P(G) is likely to have
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the scaling form, P(G) ixG; where a=const is a posi-
tive index. The fact that the moments (5) are determined
by G &'

Q brings about the requirement a & 2. The
power-law form of P(G) is related to the scale invariance
of the system. The structure of Eq. (1) is such that the
spatial scale enters the problem only in the product with
Z' . Therefore, the index c, being scale invariant, should
not depend on X and 8' either.

The index s could not be found analytically in the gen-
eral case. %e estimate it in the binary approximation
[2], which is directly applicable to the diluted fractals. In

this approximation, the nearest neighbor gives the major
contribution to the local field around any given monomer.
The local G factor is found as

G; = (b sine) [(X—r ) + b ]

+(I5cose) [(X+2r ) +8 ]

where r is the radius connecting the pair of nearest neigh-
bors and 8 is the angle between r and E . In this ap-
proximation, we obtain P(G) =JS(G G; (r, co—s8) )
x p(r)d r, where p(r) is the distribution density for the
nearest neighbor. Recalling that G &) 1, we conclude
from Eq. (6) that for a given X the maximum contribu-

tion to P(G) is given by r-(X~ 'i . Assuming that p(1)
does not vanish, we arrive at the requirement )X) ~ 1 for
original fractals and a much more relaxed condition
~X~ +P for diluted fractals. With such conditions in

mind, we obtain P(G) cc6, i.e. , the universal index
c= 1.5.

The distributions P(G) have been computed numeri-
cally using Eqs. (2) and (4) and employing the known
Lanczos algorithms of the large-matrix diagonalization.
For the CCA fractals the results are given in Fig. 2 and
for DCCA in Fig. 3. The distributions for RW and
DRW (not shown) are similar to those of Fig. 3. For all

X, except X=O, there exists a wide wing of G»1, mani-
festing the giant fluctuations of the local fields in fractals.
For 6=0.001, the function P(G) scales for G»1 with
the indices s= 1.45 (CCA, Fig. 2) and a= 1.43 (DCCA,
Fig. 3). These indices are close to each other and rather
close to, albeit different from, the binary-approximation
value of 1.5. For both R% and DR%', we obtain
= 1.39. As we see from Figs. 2 and 3, with the increase
of 8 to 0.01, the scaling region of G&&1 shrinks. The
smaller the X, the smaller the G at which the deviation
from scaling (seen as a cutoff) takes place. This cutoff
occurs at G-Q, in accord with the scaling condition
G&&Q, and is necessary to yield the correct moments
[Eq. (5) and Fig. I].
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For X) I the eigenmodes are strongly localized mainly
on pairs of monomers, and one may not expect the scaling
of P(G). However, for diluted clusters (DCCA) in the
case I & (X( (P t, the binary approximation is applic-
able, yielding the scaling of P(G) with @=I.5. This ex-
plains why the scaling behavior of P(G) for diluted frac-
tals persists with the same index up to X as large as 3
(Fig. 3), while for nondiluted fractals for X=3 we obtain
a=1.66, difl'erent from s 1.45 for ~X) ( I (Fig. 2).

We note also that for X«1, another scaling region is
seen with the index s'=0.8 for DCCA (Fig. 3) and a
small, if not zero, index for CCA (Fig. 2). We have also
found s'=0.60 for RW and e'= 0.76 for DRW. This re-
gion does not give rise to the optical hyperpolarizabilities,
but may manifest itself by the persistence of the quasilin-
ear response even for high light intensities.

The strong fluctuations of local optical fields described
by the distribution function P(G) may play important
roles in a variety of nonlinear photophysical-photo-
chemical eff'ects in random clusters and on rough sur-
faces. Among those are parametric wave mixing, laser-
induced electron emission, laser heating, melting, evap-
oration, and ionization, nonlinear selective photomod-
ification of metal clusters [7], radiative desorption of
atoms and molecules, radiation pressure at rough sur-
faces, nonlinear photochemistry of surfaces and adsor-
bates, and laser generation of plasmas with concurrent
emission of x rays at rough surfaces [13], to indicate
some.

An important application of the present theory could
be hot-plasma generation on rough surfaces by fem-
tosecond laser pulses observed recently [13]. Gold blacks,
known to consist of fractal clusters of gold, were shown
[13] to couple eff'ectively to the laser radiation. In such a
medium, an ultrashort laser pulse creates a dense electron
plasma which does not expand considerably during the
pulse time, occupying the volume of the former solid.
Hence, the light pulse interacts with the plasma possess-
ing the fractal geometry. The distribution of the temper-
ature on the subwavelength scale reflects the distribution
of the local-field intensity, P(G). Because of the long tail
of P(G) for G» I, there will be spots of high tempera-
ture with sizes -Rn-100 A at the monomers, where G

is high. We can speculate that such hot spots may con-
tribute significantly to hyperpolarizabilities and the x-ray
production by the plasma. The radiation spectrum of
such plasmas for short times after the excitation would
reffect the inhomogeneity of the temperature.

To summarize brieffy, we have shown for fractal clus-
ters that the relative intensity G [Eq. (4)] of the local op-
tical fields fluctuates in a wide interval, I G Q . The
distribution function (Figs. 2 and 3) of these fluctuations
contains the broad scaling region (I «G«g ) and the
cutoff tail (G) Q ). The latter determines the enhance-
ment factors (G") for the n-photon excitation, shown to
be very large [see Eq. (5) and Fig. I].
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