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Exchange Coupling in Magnetic Multilayers: A Quantum-Size Effect
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The long-wavelength oscillations observed in magnetic multilayers are explained by an indi-
rect Ruderman-Kittel-Kasuya-Yosida —like (RKKY) exchange interaction. A perturbative theory of
the RKKY-like exchange coupling between two ferromagnetic layers separated by a nonmagnetic
slab is derived. The approach includes a realistic description of the multilayer one-electron states,
whose wave functions satisfy matching conditions at the ferromagnetic-nonmagnetic interfaces. The
quantum-size efFects exhibited by the electron transmission coefBcient give rise to a distinct multi-
layer wavelength A, which provides the measured long periods.

PACS numbers: 75.50.Rr, 73.20.Dx

The peculiar properties exhibited by magnetic multi-
layers (ML's) have stimulated great effort. Long-range
oscillatory exchange coupling has been observed in ML's
formed by ferromagnetic transition metal slabs separated
by ordinary transition or noble metal spacers [1], and
recently, it has also been reported for an amorphous
semiconductor spacer [2]. The coupling between suc-
cessive ferromagnetic layers is a function of the spacer
thickness. Oscillation periods ranging from 9 to 18 A.

are found. Furthermore, antiferromagnetically coupled
ML's display giant magnetoresistance [3] adding a po-
tential technological interest to magnetic heterostruc-
tures (HS). Although the oscillatory behavior of the
exchange interaction has been unambiguously associ-
ated with the Ruderman-Kittel-Kasuya- Yosida interac-
tion (RKKY) [4], the specific mechanism responsible for
the long-wavelength oscillations is not yet fully under-
stood. The current explanations are based on the alias-
ing [5] and Bloch modulation efFects [6], electronic in-
terzonal transitions in extended It space [7], and spin-
polarized quantum well states at the Fermi level [5,8]. In
most models, the bulk energy bands of the nonmagnetic
spacer are used to obtain the nesting required for the ex-
perimental periods [9]. The topology of the spacer Fermi
surface [7,8] or the interference between two characteris-
tic lengths —an extremal diameter of the Fermi surface
(2K~) r and the periodicity of the spacer lattice in the
growth direction [5]—generates the experimentally ob-
served periods. We propose an alternative mechanism to
explain the long-period oscillations. ML's are quasi-two-
dimensional (Q2D) systems, periodic in two dimensions
although translational symmetry in the ML growth di-
rection is broken. As a consequence, ML wave functions
exhibit quantum size efFects, which give rise to a novel
source of long-period oscillatory behavior. We present
a perturbative calculation of the indirect RKKY-like ex-
change coupling between two ferromagnetic layers sepa-
rated by a nonmagnetic slab, which takes into account
the low dimensionality of the ML's. A simplified model
accounts for the observed periods and provides a physical
transparent interpretation of their origin.

As is well known, the coupling between isolated mag-

netic ions embedded in a paramagnetic metal are medi-
ated by the conduction electrons in the manner suggested
by Ruderman-Kittel [4]. The RKKY energy can be ob-
tained from second-order perturbation theory, using the
s-d Hamiltonian as the perturbation. The indirect ex-
change interaction that results is long ranged and oscil-
latory. In the RKKY calculation, the unperturbed one-
electron states are described by Bloch functions periodic
in the lattice. On the other hand, the actual ML elec-
tronic states are not eigenfunctions of the lattice trans-
lation operators. Electrons propagating along the ML
growth direction feel potential discontinuities when mov-

ing from the ferromagnetic to the nonmagnetic slabs.
Therefore, the electron wave functions, although peri-
odic in 2D, have to satisfy matching conditions at the
interfaces. Consequently, the proper one-electron states
should be used in the present calculation.

For simplicity, we consider only a ML period formed
by two ferromagnetic slabs separated by a nonmagnetic
spacer. We assume ideal interfaces; that is, the potential
is either the one-electron potential of the bulk ferromag-
net or that of the nonmagnetic metal. Then, the ML
period is represented by a quantum well (QW) or a quan-
tum barrier (QB). The well or barrier character depends
on the relative alignment of the constituents' one-electron
potentials. The following discussion is for the QW. Ex-
tension to the QB is straightforward [10]. The QW is
the simple Q2D structure that includes all the important
physical ingredients required.

If the z axis is taken parallel to the ML growth direc-
tion, translational symmetry still holds in the x-y plane,
and the electron motion may be considered free in x and

y. In the z direction some electronic states are con6ned
to a particular metal slab. However, the appearance
of new confined states —discrete spectrum —is not the
only manifestation of the QW structure. It is also clear
that the bulk states of the constituent media —continuum
spectrum —are modi6ed. For extended states, that is,
those with energy larger than the height of the con6n-
ing barrier, their wave functions have to satisfy matching
conditions at the two interfaces. As the Hamiltonian is
the sum of x, y, and z contributions their eigenfunctions
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are separable. Accordingly, the true wave function of an

electron of energy E(K) moving in a QW is expressed as

pK(R) = Afk(z)e'~ ' puK(R),

where A is a normalization constant, K = (pg, j'g), R =
(p, z), tc = (kx, ky), p = (x, y), tc and p are 2D vectors,
uK(R) is periodic in the lattice, and fk(z) is the solution
of the 1D matching calculation. Then, the QW wave
function is represented by a rapidly oscillating Bloch
function modulated by an envelope function (EF). The
EF varies slowly across the QW and ensures that the
boundary conditions are met at the interfaces. For ener-

gies lower than the barrier height the electron motion is
quantized and fk(z) is evanescent outside the well. For
energies greater than the barrier all the energies are al-
lowed. The wave vectors in both the well and the barrier
are real, as those of propagating states. Each eigenvalue
is twofold degenerate corresponding to two waves travel
ing towards increasing or decreasing z. Hence, the EF,
fk(z), can be written in terms of the reflection R(E)
and transmission coeflicients T(E) across the QW. In
the continuum, the quantum efFects manifest themselves
through an oscillatory behavior upon the energy of the
transmission and reflection coeScients [11].

The band structure of transition and noble metals con-
sists of five narrow localized d bands, crossing and hy-

bridizing with a nearly free electron band formed from
atomic s and p states. Then, their conduction elec-

where 2L is the thickness of the potential well, r(E) and

t(E) are the QW reflection and transmission amplitude,
respectively [11],and

hz ( 2m,'

According to second-order perturbation theory, at 0 K
the interaction energy between two electronic spins S;,S~
embedded in the QW is given by

H(R;, ) = —J(R;,)S;S,,

where the indirect exchange coupling constant is [12]

(3)

trons can be described as free electrons with efFective

masses, and a ML period modeled by a conventional

rectangular QW. That is, the conduction electron of the
two metals forming the ML are represented by a single

parabolic band with constant potential V~ and effective

mass m,', i = 5 for the ferromagnet and i = ic for the
nonmagnetic metal. In this model, for energies E ) Vk

the twofold degenerate functions fk(z) are given by

etk6z + r(E)e tk-b& oo & z &
fk+( ) =

t(E),'k,. L «, ~
(2)

t(E)e '"" —oo & z & L—
fk ( ) e tkg—z + r(E)etkbs L & z & oo

(R )
J,'g - )- e'" """f(z')fk(z')f (z)fk(z)+

ij E(K ) —E(K)KgKF K'&KF
(4)

the summation symbol represents a sum for the discrete
spectrum, and an integral for the continuum. Ks is
the Fermi wave vector and J,s is a parameter equiva-
lent to an atomic s-d exchange integral [13]. To obtain
expression (4) we come across matrix elements —integrals—involving the product of a slowly varying function of
position, fk(z)e'"~, and a periodic function uK(R). We
have assumed that the variation of the slow function
across the diameter of an atom is negligible, that is, the
modulation changes of the conduction electrons across

I the atom are neglected [3,11].
Now we consider that in the QW the atomic planes ad-

jacent to the noble metal spacer are populated with ferro-
magnetically ordered magnetic moments. In the contin-
uous limit of spin distribution, to evaluate the coupling
between the two atomic planes, we start from expression

(3) and integrate over the entire surface of a layer at
constant z = L. The intera—ction energy per unit area
becomes independent of p, since the surface integral is
zero unless m —e' = 0. Then, the corresponding change

[ in energy is calculated from

KF
JQ&D(Z —LL) = ", ~ fk+(Z r)fk+'(zl )-+ fk (z 1)fk '(»). -

Q

fk ('-~)fk (zL) + fk (' I)fk ( r )-
E(K') —E(K)

where 6 is the Dirac delta function. The continuous limit, in which each orbital state K corresponds to a volume

dK/(2n ), has been taken. The contribution from the discrete spectrum, which due to its localization in the well slab
is expected to be small, has been neglected [10,14]. Then, in deriving (5) perturbation theory for degenerated states
has been applied. The K integral can be evaluated analytically in cylindrical coordinates, if it is assumed that the
efFective mass does not vary appreciably when changing from material. The restriction K ) K+ is dictated by the
exclusion principle. However, (5) can be integrated over all K' states, as the extra term added to the integrand is
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)e~2k'L

I2
v k~F —k~

Kd K
J,2„2m' "F

JCl2D(z —LL)— 2x 4h2

To avoid the singularities of the integrand
residues [4]. Then Jcl2D becomes

t(k)e'2" + t (k)e ' "
] dk (6)

in the k' integral, we used principal values and the Cauchy method of

antisymmetric in K and K' and so integrates to zero [4]. After performing the d2e' integral, we substitute (2) in (5)
and employing the relations [r(E)] + ]t(E)[ = 1 and r(E)t'(E) + r'(E)t(E) = 0 [ll], expression (5) can be written

J2qm
Jcl2D(z —LL) =—

2 2' Q

Besides (kF2 —k2), expression (7) difFers from the range
function of the 1D case by the transmission amplitude
factor [15]. Its appearance is a direct consequence of the
ML wave function properties. This is a relevant result,
since the quantum effects displayed by t(E) give rise to
distinct features of Jq2D upon the interlayer thickness.
The remaining integration in k is not analytical and has
to be performed numerically. The various simplifying
assumptions made above are introduced to get a simple
and physical transparent expression for the coupling con-
stant. However, the calculation can be readily extended
to include any Q2D model for the ML's [10].

To estimate the interlayer thickness dependence of the
indirect exchange coupling Jci2D, we evaluate expression

(7) for a Co/Cu QW. The only parameters entering the
calculation are the Fermi level, V, and m,', where i=
Co, Cu. We assume that the conduction electrons of
both metals are described by the bulk sp bands and
that m' = 1. Then, when the Fermi levels are aligned,
V, is the energy of the bottom of the Co/Cu bulk sp-
band referred to the Fermi level, Vc„——0.692 Ry and

VC, = 0.669 Ry [16]. The energy difFerence of the bulk

sp band at the I' point, hV = Vcs —Vce = 0.023 Ry,
gives the confining potential. Figure 1 presents the calcu-
lated exchange couplings versus the Cu interlayer thick-
ness. The top curve a corresponds to Jci2D obtained from
expression (7), while curve 6 represents the coupling con-

stant, JiD, of a 1D QW. In the bottom, curve c, the
calculated ordinary JRKKY averaged over a plane [15],
with

2m*
KF =

2 VGU

and m' = 1 is represented. The ordinary RKKY ex-
change interaction, curve c, shows the well known asymp-
totic sin X/X form, falls off rapidly, and has a period
of 1.13 ML. This value is closed to the 1.3 ML obtained
with the experimental KF. Although, our purpose is

only to give qualitative arguments, the reasonable agree-
ment between these two values indicates the adequacy of
the simpliled model used to describe the bulk metals.
On the other hand, both Jg2D and JqD do not present
the characteristic RKKY-like behavior. Instead they dis-

close a peculiar structure. The coupling is ferromagnetic

(FM) for most thicknesses, but at specific values it dis-

plays sharp antiferromagnetic (AFM) peaks. The only
difFerence between both curves is the rippled structure
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kF g2 k ~i4kL
(k2 —k2)1

' (")' dk. (7)

with the ordinary short RKKY period, which modulates
the 1D coupling constant. The modulation is not ap-
preciable in the Jcl2D, since it is smoothed out by the
integrals involved in the 3D case. The AFM maxima

appear whenever

AFM
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FIG. l. Indirect exchange coupling constants versus the

Cu interlayer thickness for a Co/Cu quantum well. Curve a
corresponds to Jgqo evaluated with the 3D MI wave function

[Eq. {7)]. Curve b represents the coupling constant of JiD
derived from a 1D ML, while in curve c the ordinary JOKY
averaged over a magnetic layer is shown [13].

or equivalently when t(EC ) is equal to 1. n is an inte-

ger and Ec, the bottom of the Co band. The discrete
thicknesses which fulfill this equation correspond to the
existence of a transmission resonance at the onset of the
continuum. t(Ece) is always zero unless the resonant
condition is satisfied. Then, the change of the trans-
mission coefficient t(EC, ) at each resonant energy can
be identified as the cause of the AFM peaks. Further-
more the AFM period is completely determined by the
confining potential. The calculated period is 6.13 ML,
which compares remarkably well with the experimental
one —6 ML. Furthermore, although the shape of the
thickness dependence can rely on the details of the po-
tential and could also change if the discrete spectrum is

included [17], asymmetric oscillations —longer thickness
intervals for FM coupling —clearly seen in Fig. 1 seem
to appear in the experimental results (Fig. 4 of Ref. [18]
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and Fig. 5 of Ref. [19)). Moreover, in the present model,
the strength of the AFM coupling is determined by quan-
tum size effects on the magnetic carriers [10). This would
explain the experimental observation of AFM coupling at
spacer thicknesses as large as 45 A [18), for which the or-
dinary JRKKY is almost negligible (Fig. 1, curve e). As
stated above, the main object of this study was not to ob-
tain quantitative accuracy, but to provide qualitative ar-
guments in favor of an alternative mechanism responsible
for the long-wavelength oscillation. However, the simple
model described previously accounts reasonably well for
the magnitude and period of the observed oscillations in
the exchange coupling of magnetic ML. In the present
approach the FM to AFM switch is clearly related to the
quantum-size effects of the electron transmission coeffi-
cient across the nonmagnetic layer. As the thickness of
this layer increases an AFM peak occurs whenever a new
resonance level becomes occupied. The rate of this pro-
cess is controlled by the potential discontinuity between
the ML's constituent metals. Then, there is a distinct
ML length

2m'b, V '

and the indirect coupling manifests the response of the
conduction electrons with the characteristic wavelength
A. Since the proposed mechanism does not rely on the
existence of the Fermi surface or on the periodicity of
the spacer, it could also explain the observed oscillatory
coupling for semiconductor spacer. However, a less crude
model for the ML conduction electrons would be required
to take into account the Schottky-barrier formation. In
summary, we have shown that long-period oscillations in
magnetic ML can be due to quantum-size effects. The
boundary scattering at the spacer-magnetic film inter-
faces induces spatial symmetry to the electronic wave
function, which give rise to long-period oscillatory ex-
change coupling. The above theory provides a natural
explanation for the interlayer coupling in ML and open
promising outlooks towards new magnetic effects in low-
dimensional systems.
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