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Theory of the Marginal-Fermi-Liquid Spectrum and Pairing in a Local Copper Oxide Model
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We solve for the properties of an impurity model abstracted from a model of copper oxide supercon-
ductors. At mixed valence, provided that Friedel's screening condition is satisfied, the marginal-Fermi-
liquid spectrum is obtained for the spin and charge susceptibilities. The frequency dependence of the
self-energies is Z( to) al-)n 0+)i «) Th. is critical point is surrounded by two dilferent Fermi-liquid phases.
A simplified two-impurity version of this model is also addressed, and presents similar features, including
a logarithmic divergence for coherent pair susceptibility.

PACS numbers: 75.20.Hr

The quasiparticle concept and Landau Fermi-liquid
theory have been cornerstones of condensed matter phys-
ics. The normal state properties [I] of the high-T, ma-
terials appear not to conform to this framework. In an

attempt to find the unifying features in the diverse ob-
served anomalies, a phenomenological form for the spec-
tral function for spin and charge Auctuations was pro-
posed [2]. For to « vF q, this marginal-Fermi-liquid
(MFL) spectrum has the form

—N(0) —,to« T,
Imps (q, to) —~ T'

—N (0), T « to « to, ,

where co, is a cut-oA' energy. It is a scale invariant spec-
trum, as in the Auctuation regime of a quantum critica1
point. One of its consequences is that the quasiparticle
residue vanishes logarithmically, z —I+A. In(to, /x)
~here x =m x(a~ ~,taT).

An important point about the MFL spectrum is that
the singularities are in the frequency dependence; the
momentum dependence is assumed smooth. It is then of

interest to study strongly correlated models of an impuri-

ty embedded in a Fermi gas, where exact answers may be
obtained. If the (q independent) singularities in such a

model do not depend on any special symmetries which are
lost in the lattice problem, they are likely to be relevant

to the lattice problem, One way to see that the singulari-

ties in the single impurity problem do not get modified in

any essential way is to study the stability to perturba-

tions, including the coupling to another impurity.
An impurity model abstracted from a model of copper

oxides was solved recently by Wilson's numerical renor-

malization group [3]. The spectrum at the mixed-valence

point of impurity [such as occurs in the copper-oxide

metals, where Cu Iluctuates between Cu+(S=O) and
Cu++(S=

2 )] is consistent with the MFL form. Here

we obtain and extend the results analytically gaining

significant new insights, and also study the eA'ect of the

perturbation from another impurity.
The impurity model studied bears the same relation-

ship to a proposed copper oxide model [4] as the Ander-

son or WolA' model for a local moment bears to the Hub-

bard model. We consider

& = g akteknteknt+Cdnd+Und)ndi+tg(d Ck~+H. C.)+ Z Vkk't(nd 2 ) Zekalek'nl
k, cr, I k, cr k, k', I

d is the local orbital, which as required by symmetry hybridizes only with one point-group channel (l =0). This will be

referred to as the hybridizing channel. Other channels, the screening channels, have only the ionic interaction VI.

Given finite t and large U/t, it does not matter asymptotically whether or not one keeps V0 finite. We will take V0=0.
In fact, in the Wolff model, there is no separate d orbital. One must identify ay and U as the local level energy of tile

hybridizing orbital and the local repulsion at the special site.
It is convenient to change the representation to real space operators, specifically to those operating on radial shell or-

bitals, defined by Wilson [5]. The Hamiltonian in such an eA'ective one-dimensional representation is %f =/i'0+/t'K)N
where

0 ed(nd z ) +Undindi+ tg(d h + h d )+2 Vt(nd 2 )(slnsln 2

+KIN Z(thhnah(n+i)n+tssnlns{n+i)la+ H.c )
n, e

where n is the shell index, and h and sI simply denote the hybridizing and screening electrons at the 0th she11. The

screening channels may be expressed in terms of a single spinless fermion operator. Indeed, we can express the original
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resonances cannot be constructed perturbatively, putting
in jeopardy the Landau correspondence between the low-

lying excitations of the interacting and noninteracting
fermions. To form the low energy resonances, we consid-
er U, V» t. Actually, we will take U +~ (only Cu
and Cu++ allowed). We can now diagonalize the spec-
trum of the impurity. The two lowest states are

rt ~0) =~0, 1), with energy E = ———V

4 2'

screening fermions operator s( in terms of boson fields [6]:

(4)s( (x)= e
0

Then, the screening density at the impurity site is

g(s(~(.——, ) =—g1 r)4(e
(5)

gy, ( (r ~,( Bx

Now define i((, =N 't2+ ((t((, as well as (N —1) other
orthogonal new fields, such that the transformation to the
new fields is a unitary canonical transformation. The ki-
netic energy is invariant under this transformation, and
the interacting term involves only the total charge p, .
We now reexpress p, in terms of a fermion operator s
through a transformation similar to (4). The screening
interacting term then is

(7)
'2

V +t 2

2 4

where in the bras, the first number is the charge and spin
of the impurity plus the hybridizing channel and the
second, the charge in the screening channel. Other states
are separated by energies of at least V. The states in (7)
satisfy the important physical requirement of the Friedel
screenin sum rule. In the model of Eq. (2), this is

the small phase
ly for potentials

tp, and generate
of the two states

(t(0) =~o,0), with energy Er,

vied —i( )(s ts —
2 ), v =tv v, (6)

g
where N is the number of screening channels, assumed all
to have the same interact&on V. shift I/(rN, so that bosonization, valid on

The physical idea in the proposed route to the break-
down of the Fermi-liquid and quasiparticle concepts fol- We now rturbativel turn on t
lo~ed here is that for ionic interactions V above a critical an effective
value, local multlparticle resonances form at the chemical (7) We must also satisfy the constraint
potential, drawing weight of the one-particle or hole spec-
tra from higher energies on the scale of the charge Z('(+n'n=l, «ZCo'( ~ I.
transfer gap in the insulating state. The multiparticle

The effective Hamiltonian so generated is

P PK(N+agg~~g~+tg((, "trtsth~+H. c.)+J(top. htoh+, g(tg 2 V, (sts —i )+Vh ghth 1' (9)

PK(N is the kinetic energy of the hybridizing and the
screening electrons plus, in principle, the contribution of
the now uncoupled (N —I) other combinations of the
original screening electrons, where e=E» —E„, and the
new coupling constants are

2ts 2th ts V 2th
V, = '„, t"= „2 ', J=Vh=, (10)

@+V V +g2 e+V '

with th t(, /(a+ V). The direct hybridization of the local
orbitals has disappeared in (9). It is replaced by the term
proportional to t, which imposes the readjustment in the
Fermi sea of the hybridizing and screening electrons to go
from one multiparticie resonance to another. Now, it is
seen that the operators multiplying t, J, V„and VI, are all
marginal, and the terms in the kinetic energy connecting
the impurity sites to farther and farther shells are succes-
sively irrelevant. The marginality of t is crucial to the
subsequent developments. It is connected with the fact
that there is one operator each in the screening and the
hybridizing channel in the operators multiplying t, which
is in turn due to the obedience of the Friedel screening re-
quirement by the impurity basis of Eq. (7). If the screen-
ing is less than this so that hybridization is relevant, we
would end up with a Fermi liquid, and if more than this,

+0 /i KIN+~ Z (Ae 2
CF

+ t s trtg(,"t+H.c. +Jg (tg- (12)

/f'= V(,pp g( g —
2 + V o(iso'g~g~.

Here, P' contains the longitudinal scattering terms, in-
cluding those generated from (ti'K(N by the rotation (11).
pI, and oh are the charge and longitudinal spin densities
of the hybridizing channel. In )Yo, only one linear com-
bination a=((,"t+gt)/J2 is now coupled to the conduc-
tion electrons. The other combination P (gt —gt)/%2 is
free [except for the constraint of Eq. (8)]. 'S' gives

the corresponding term would be irrelevant like in one of
the models of Ref. [3], leading to singularities too strong
for the Cu-0 problem.

It is convenient to introduce the bosonic field i(i associ-
ated with h by a relation similar to (4) and rotate P in

Eq. (9) by (J =7'17'1 with

7' =exp[i(gt(," —
—,
' )y.(0)], [7.,7' .] -0.

The Hamiltonian then transforms to (ti( =/i(0+/i', with
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corrections to physical properties which are at most of or-
der to into+0((tolnto) ), as checked a posteriori

We now derive the physical properties of Po, taking
exactly into account the constraint of single occupancy at
the impurity site and then consider the perturbative
corrections due to P'. The potential part of P is now
written in terms of a and P:

V = (s+J)(a a —
—,
' )+ (s —J)P P+ t(s a + as) . (14)

We also allow s=so+& (T) in (14) to depend on temper-
ature, with X(T) 0 as T 0. This is justified below.
In (14), we have dropped rt, ensuring the constraint in the
form n, + gp ~ 1. The matrix elements of P are of
course identical whatever form is chosen for the con-
straint in (8), as can be readily checked. The Hamiltoni-
an (14) conserves ns In . the subspace nti=O, the con-
straint is satisfied with an unconstrained a. So, the Ham-
iltonian is a simple quadratic one in s and a. In the sub-
space np=1, n =0 and the Hamiltonian is diagonal.
Physical quantities can therefore be computed by taking
the trace on both ntt=0, 1 subspaces. One then has (np&
=Z 'exp( pFi) w—ith Z =exp( pFti)+—exp( pFi), —
where Fo i are the free energies associated with the Ham-
iltonian in subspaces n~=0, 1 minus the free energy of the
free conduction electrons. At T=O, one finds

Fi =(so —3J)/2,

of &i. and (nti& are associated with a frequency-dependent
phase shift of the conduction electrons at the critical
point, 8(to) —(to/I ) In(I/to), unlike the analytic phase
shift for a Fermi liquid. This arises from P' as seen
below. Note that the treatment of the constraint in mean
field at this level or in the original Hamiltonian (9) gives
rise to a similar behavior for nti and k [7]. In this ap-
proach, k plays the role of a Lagrange multiplier enforc-
ing the constraint.

In the present impurity problem, the critical point is
reached only by fine-tuning parameters, as was already
encountered for instance in the case of the two-Kondo
impurity problem [8,9]. If the MFL singularity survives
in the lattice problem, one can expect that the singularity
in the free energy at the mixed-valence point should pin
the chemical potential near it for a finite range of the pa-
rameters [3].

The f'ree energy can be computed exactly and has the
I'orm —TIn[exp( —PF, )+exp[ —P(FxiN+k/2)l] up to a
constant term, where F, is the free energy of the quadra-
tic Hamiltonian involving a and s. The impurity charge
and longitudinal spin susceptibilities g ~ can now be cal-
culated at the mixed-valence critical point, using the rela-
tions cr, =(atP+P a) and p=(a a+P P —

—,
' ) and

~p
g (T) =J (T,m(r )m(0)&dr, m =a„p.

(I S)

I
—

&np&
G, ( )=KG t i(to)(I —

&nti&) =
ito+il sgn to

where in (16), G, (r) is the Green's function of a
without the constraint, and m is a Matsubara frequency.
The conditions Fo F» and (n~& =

2 are simultaneously
satisfied at so= —J, and yield k(T) = I exp[ —Pk(T)/2]= 2Tln(I"/T), as well as the relation J =(I /4tr) ln(l
+W /I ). In the limit T 0, we then have (n, &

—
2

and (nti& (T/I ) In(I-/T). The temperature dependences

(16)

for a square density of states (DOS), where W is the
bandwidth and I trpt is-the a-level width.

If the system is exponentially frozen in either one of
the subspaces nti=O, I, one obtains two different Fermi-
liquid states at low temperature. To reach the critical
point, one must allow Auctuations between them. This
requires that the ground state energies in the two sub-
spaces are identical, i.e., FO=F~, which always has a
solution provided J) (I /4tr) ln(l+ W /I ) is antiferro-
magnetic. %'e note in passing that in the present prob-
lem, the sign of t is arbitrary, but not that of J in the
(x,y) plane, due to the presence of t The above .condi-
tion does not determine (nti&(T). In fact, the critical
point occurs at the mixed-valence point, where the states
n~ =0 and n~ =1 are degenerate and have equal weight, so
that (n~& =(n, + nti&

=
z + 0(k, T). (n, & is calculated

from the a Green's function, which is easily shown to be

The charge susceptibility can be also computed from the
free energy, but the Kubo formula turns out to be simpler
to deal with. For this, one uses G,(r) of Eq. (16), and
the fact that nti commutes with Sii. At zero frequency,
the singular part of g~ is proportional to Pnti(1 —

nti)-I ln(I"/T), i.e., a MFL-like susceptibility. The spin
susceptibility is more delicate to compute. In the associ-
ated Kubo formula, it is not possible to use the Wick's
theorem even though the Green's function of a is known
exactly. Ho~ever, noting that the a particles are hybri-
dized to the conduction electrons, g is exactly related to
the absorption spectra in an x ray problem with a
Lorentzian DOS [10] in the conduction band and a
scattering term U'n, np, with an infinite U'. This term en-
forces the constraint between n, and np. An antibound
state is created at a large energy of order U', associated
with a phase shift tr. Physically, at the secondary thresh-
old [11]at the chemical potential, the exponent is expect-
ed to be 0. In that case, we find that in terms of the time
variable, and for large r (but r &P/2), (T,m(r)m(0)&
—I /r, with an essentially symmetric behavior with
respect to P/2. After integrating over r, one then finds
that g is proportional to I 'In(I/T), and thus behaves
similarly to g~. The same calculation yields
(T,P'(. )P(0)&

—I/. .
%e now study the eftect of the perturbation B'. One

can now justify the introduction of A. (T) by the fact that
we indeed find that the correction to the real part of the
local impurity self-energy is to the leading order of the
form ~inn, and that the frequency dependence of g~ is
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with A,~ and A,, of order 1. This is in contrast to the typi-
cal co' se)f-energy found at the critical points of other
impurity problems [8]. The fact that the successive terms
are not higher powers of lnm times m as in the x-ray
problem is due to the constraint and the related fact that
the P level does not sit at ro 0. Similarly, the effective
screening electrons yield a self-energy which is constant
due to the hybridizing term, plus a term of the same form
as (18). It is reasonable to expect that the individual
screening channels of the starting Hamiltonian (2) also
have a colnro self-energy, even if it seems hard to invert
the transformation of Eqs. (4)-(6). This self-energy cal-
culation also justifies the treatment of /ii' perturbatively.
The pairing susceptibility &T,htht (r)h h (0)) can
also be perturbatively calculated and has a In(co, T) di-

vergence.
Next, we very briefly consider the problem of two iden-

tical Cu impurities in the metal at sites a and b. Quite
generally, we can expand in appropriate local symmetry
channels about a and b to get a Hamiltonian which also
includes some transfer terms:

'P 'P, + Pb+gt„bh„'tIi„~+gt„, ,s„'ts„+H.c. ,
n, e

(i9)

where 'P, ,b are of the form given by Eq. (3), with all
operators having the extra label a or b. To keep the mod-
el tractable, we only consider the case of a single screen-
ing channel. In a model with more channels and spin in

the screening channels, one must also consider a mixing
term between the hybridizing channel at one site and the
screening channels at the other, which prevent us from
cleanly doing the transformations (4)-(6). In a simpli-
fied model with a single screening channel, the bosoniza-
tion can be performed using the same steps as for the
one-impurity case, without affecting the transfer part.
The conclusions of a similar study as above are that the
transfer Hamiltonian does not destroy the critical point,
now characterized by the mixed-valence condition J—Fp 2Ft & 0 where Fp ~ are the ground state energies
in the np=n~ +np, 0, 1 subspaces. The principal reason

of the MFL form. Finally, this also results in a T In(T)
singularity in the free energy, or a singular specific heat
C(T)/T —In(I /T), which diverges in the same way as al-
ready found in the two-channel or two-impurity Kondo
problems, for which the susceptibilities also present a
MFL form [8,9].

Next consider the conduction electron self-energy. The
fixed point Hamiltonian alone yields that the Green's
function of h is of the free-fermion form. A perturbative
calculation in /f' also yields a correction to the co=0
self-energy

Zb(m) = (Xp+X, ) [rolnro+irosgn(ro)]+0((rolnro) )

(i 8)

is that, apart from the constraints, p, b remain decoupled
from the other operators and from each other. We find

that the local as well as the cross susceptibilities are of
the MFL form. In particular, the cross pairing suscepti-
bility, reAecting the phase coherence of pairs between the
two sites is also logarithmically singular.

It is interesting to note here that a mean-field treat-
ment [7) of the constraint (8) on the (prebosonized)
Hamiltonian (9) yields essentially the same answers as
obtained here and earlier [3].
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