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Vortex Glass Phase and Universal Susceptibility Variations in Planar Arrays of Flux Lines
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Some of the thermodynamic properties of the low temperature vortex-glass phase of randomly pinned
AUx lines in l+ l dimensions are studied. The Aux arrays are found to be sensitive to small changes in
external parameters such as the magnetic field or temperature. These eN'ects are captured by the varia-
tions in the magnetic response and noise, which have universal statistics and should provide an unambi-
guous signature of the glass phase.

PACS numbers: 74.60.6e, 05.20.—y

Flux lines in a clean type-Il superconductor form an
Abrikosov lattice at low temperatures [I]. However, the
Aux lattice is destroyed by random microscopic impurities
in the material [2]. Recently, it has been suggested that
the disordered Aux array may form a new thermodynamic
phase at low temperatures, called the "vortex glass"
phase, in which Aux lines are collectively pinned by the
impurities [3-5]. Although a glasslike behavior has been
reported experimentally [6], a quantitative theoretical
description of the vortex-glass phase is still lacking except
in the special case of Aux lines confined to a plane (I+ I

dimensions). As first shown in Ref. [3], such a I+ I di-

mensional Aux array undergoes a phase transition at a

finite temperature Tg. Below Tg, the Aux array is pinned

by the random impurities and forms a glass phase. How-

ever, the properties of the glass phase have not yet been
elucidated, and a number of contradictory results exist in

the literature [7-13]. In this paper, we analyze the vor-

tex glass phase using the renormalization-group method
of Cardy and Ostlund [14]. We find the glass phase to be
characterized by anomalous variations in the magnetic
responses of the Aux array, and extreme sensitivity to
small changes in the applied field, impurity potential, and
temperature. Such glassy behavior has been previously
conjectured for spin glasses [15] and one flux line

[16-18],and is expected to be generic to a wide class of
randomness dominated phases. However, the I+ I di-

mensional Aux array is one of the very few systems where

analytic results can be obtained.
We consider an array of flux lines confined to the (x,z)

plane, with an applied field H=H, i and repulsive in-

teractions which we model by linear elasticity [19,20].
Impurities yield a random potential V(x,z). Labeling
the transverse displacement of the nth line by r„(z)
= [n —p„(z) 2/] trp/, where p —H, is the average line den-

sity, we can describe the large scale Auctuations of the
flux array by the Hamiltonian [3,7,8,20]

PC'P = dx dz I
—[(t)„te))'+ (tl, y) '] —V(x, z ) tl It)

—4xp)'(x, r)xor(2xpx+r)l). ())

where t()(x,z) is the coarse-grained displacement field. In

Eq. (I), the x and z dimensions have been rescaled to
make the quadratic part isotropic. The elastic coeScient
tc-(dp/dH) ' is weakly temperature dependent. The
cosine term in Eq. (I ) comes from the invariance of the
system to an overall shift in the labeling index n of the
lines. It picks out the discrete nature of the Aux lines and
is crucial to the formation of a glass phase. The model
(I ) also describes the phase Auctuation of Josephson vor-

tex lines in a planar 3osephson junction as derived in Ref.
[21].

Upon renormalization, one generates a term of the
form V'(x, z)tl, (t), which randomly biases the local tiit of
the flux lines. It is found that the variances of V and V'

are renormalized in the same way, so that the inherent
spatial anisotropy and frustration present in Eq. (I )
disappear at large length scales. It is then more con-
venient to work with the isotropic Hamiltonian

/t'f(II] =g ' —
(VINES)

—p VP —IV(p(r), r)
r

W(p, r) W(p', r') =2gcos[it) —(t)']8' (r —r') . (4)

Denoting the bare parameters by the subscript 0, we have

go- oop . A renormalization-group analysis [14,22]
yields the recursion relations under a change of scale by
b=e',

dtc/dl =0,
der/dl =Ag

dg/dl =eg —Cg

(6)

The coeScients A and C are cutoA dependent, however
the ratio 2/(tcC) =2tr+O(e) is universal Equations.
(6) and (7) are valid to leading order in g, which will be
sufhcient provided

where r =[x,z], p(r) = V(r)x+ V'(r)i is Gaussian distri-
buted with mean zero and variance of the component p;

p;(r) pt(r') =aB;,8'(r —r'),

and W(p, r) ~cos[p(r) —P(r)] is a random potential,
describing the eA'ect of a random phase P(r), with
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is small. This is true even though o can flow to large
values by Eq. (6), because the random potential p in Eq.
(2) can be shifted away by the transformation p'(r)
=p(r) —u(r), with xV u =V.p, regardless of the magni-
tude of p. The resulting potential W'(p', r) =W(p'+u, r)
has the same statistics as W(p, r) since the latter is un-
correlated in r. Consequently, the flow of g cannot be
affected by p. A similar use of the statistical symmetry
of P shows that the result that x is unrenormalized in

Eq. (5) is exact [22,23).
Clearly, a=O is a special point; it defines a critical tem-

perature Ts=4trx through Eq. (8). For T & Ts where
e&0, g renormalizes to zero and at long scales the sys-
tem is described by the Gaussian part of the Hamiltonian
(2) with a finite renormalized o. This is the flux liquid
phase with the disorder causing only short wavelength
modifications of the pure system [19]. But for T & Ts
where e&0, there is a nontrivial phase controlled by a
fixed line g (T), with rr renormalizing as in Eq. (6).
Close to the transition, we have g =s/Ccx'(Ts —T),
and on scale L, cx(L) =A(g ) logpL. This is a vortex
glass phase [24].

The existence of a perturbatively accessible fixed line
allows us to study the thermodynamic properties of the
vortex glass phase quantitatively. The nonrenormaliza-
tion of x implies a simple form for the mean square
thermal fluctuations of p, i.e., ([p(r) —P(r')] ), = T/
(nx)log[p) r —r')] the same as in the absence of random-
ness [23]. The glass phase is instead distinguished by
more strongly divergent static distortions. For example,
the mean square (thermally averaged) displacement is

(p(r) —p(r')) =2e log [p(r —r')] due to the logarith-
mic divergence of cr [221. However, this is not a unique
feature of a glass phase, as systems with long-range
correlated p's can also give rise to anomalous mean
square displacement even if g=0, in which case the sys-
tem is harmonic and trivial.

We therefore consider other thermodynamic quantities
whose behavior is unique to a glass phase. We first study
the magnetic response of the flux array. We change the
applied external field by an amount 8H 8 Hx+8 Hz,
which tends to compress and/or rotate the flux array. For
an isotropic system, the Hamiltonian becomes

(10)

yielding a free energy

F(h) = L —— h. tt,&r

and hence a response g=1/x. Since the random part of
F(h) is linear in h, the response will be sample indepen
dent as in a pure system, with (ill)"=0 for n & 2 where
hg=g —g. This is solely a consequence of the quadratic
nature of the Hamiltonian with g =0.

The magnetic response in the low temperature phase,
where the random phase term in (2) is relevant, is much
more interesting. Since the transformation (10) does not
change the statistics of the Hamiltonian P [22,23], ex-
cept for generating an extra quadratic term as in Eq.
(I I), the quenched-averaged free energy F(h) is the
same as for g=0. Thus, g 1/x independent of g. Fur-
thermore, the average of higher order nonlinear suscepti-
bilities (Ag)" all vanish due to the statistical symmetry
[23l. Thus average response functions are identical in the
glass and liquid phases. This result has led some to mis-
takenly doubt the existence of the glass phase [12]. How-
ever we will show that the glassy eff'ects are manifested in

sample-to-sample variations of the susceptibility and its
extreme sensitivity to small perturbations.

Let us compute the effect of the random potential Won
the susceptibility variation, perturbatively at first. After
the transformation (10), the correlations between the free
energy at two different fields hi and h2 can be calculated
to the lowest order in g. For hF(h)=F(h) —F(h), we
have

BF(hi)dF(h2) =2g(pL) t " cos[(hi —h2) r/x]

(12)

for a system of size LXL, with the (pL) t" factor
arising from averaging over thermal fluctuations. Diff'er-
entiating with respect to h~ and h2 leads to nontrivial
sample-to-sample variations of the magnetic susceptibili-
ty, with variance

(13)

(9)

where h =(bH, x+bH„z)@0/Str, @0 being the magnetic
flux quantum. The change in the flux density is (8„p)/2tr,
and in the "tilt angle" is (8 p)/2'. The linear response
on which we focus is g; J = (8/Bh;)(BJ&). For the isotropic
system (2), we have g~. Zb;J, and the magnetic permea-
bility is just (@ii/16n )g. Simple rescaling yields a simi-
lar result for the anisotropic system.

Consider the high temperature phase where discrete-
ness is irrelevant, i.e., g=O. Then the last term in (9)
can be simply shifted away by the transformation

to first order in g, with D being a sample-geometry depen-
dent coe%cient.

For T & Ts (i.e., e & 0), Eq. (13) gives the form of ap-
proach to the asymptotic liquid phase where (hg) =0 as
discussed above. For T & Ts, (hg) diverges since s&0,
indicating the failure of the small-g expansion. Equation
(13) does, however, suggest the form of the correct be-
havior: The term g(pL)' should just be replaced by the
renormalized gtt(L). Explicit computation shows that
this is indeed the case. For large systems in the vortex
glass phase, gtt(L) g hence we obtain a fractional
variance
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with D a universal geometry and boundary condition
dependent coe%cient, that is independent of nonmeasur-
able bare parameters such as go. For a L„&L, rectangu-
lar section of a large isotropic sample, we have D = (8x/
5)a, where a=L, /L, for the longitudinal susceptibility
and a =L,/L„ for the transverse susceptibility. The large
sample-to-sample variations of g indicate that the vortex
glass phase is radically different from the fluid phase
[25]. The size-independent variations of g in the vortex
glass phase are reminiscent of "universal conductance
fluctuations" in disordered metals [26].

Experimenta11y, variations of g may be obtained by
measuring the magnetic response of one sample at dif-
ferent applied fields H. It will be particularly convenient
to keep (H( and T fixed, and follow the response as the
direction H is changed. The variance (hg) only depends
on T and (H) (through «). Then as H is changed, say by
rotating a sample in a fixed field, it eff'ectively samples
different "realizations" of the random potential, drawn
from the same distribution since systems with different
field directions H are statistically equivalent [27]. For a
system of size L & L, the free energies and hence the sus-

ceptibilities become uncorrelated if H is changed by an

angle much greater than (pL) ' as can be guessed from

Eq. (12) with x-@OH/p. In the glass phase, we thus ex-
pect to obtain a wildly varying susceptibility g(H), whose

precise form is a property of the specific sample, but with

universal statistics, in particular, (hg) /g . Alternative-

ly, one could monitor the magnetic noise as a function of
H. This should exhibit universal variations like g(H),
since the two are related by the fluctuation-dissipation re-
lation. The susceptibility variations at a fixed T and ~H~

provide "magnetic fingerprints" of the glassy Aux phase.
The reproducibility of the magnetic fingerprint for the
same sample under identical conditions provides a probe
of thermal equilibrium on long scales: Only samples
small enough to equilibrate fully (see below) will show

reproducible behavior.
From the above discussion, it is evident that the equi-

librium state of the flux array depends sensitively on

small changes in the applied field. As argued in Refs.
[15] and [18] on general grounds, a wide class of random

systems can exhibit such sensitivity to sinall changes of a

variety of parameters such as a field or temperature.
Large variations resulting from small changes in the ran-
dom potential V(r) have been studied numerically by
Zhang [161 for a single flux line. In the remainder of this

paper, we analyze explicitly the effect of such a small

change in the random potential for the I+ I dimensional
Aux array. Sensitivity of the array to small temperature
changes can be analyzed similarly. %e merely quote the
analogous result for this somewhat more complicated
case.

We consider two noninteracting flux arrays, p(r) and

p(r), in two diferent realizations of the random poten-
tial, [p(r), W(p, r)] and [P(r), W(p, r)], respectively. We
take the random potentials to be statistically equivalent
but slightly diff'erent form each other, so that P(r)gc(r') is

given by Eq. (3) and W(p, r) W(p', r') is given by Eq. (4).
However, the cross eorrelators are

p;(r)P, (r') - ob;, b'(r —r'),

W(p, r )W(p', r') =2g cos [p —p'] b (r —r'),

(i 5)

(i 6)

with the bare values 80 & aq and go (go. The
renormaiization-group recursion relations Eqs. (5)-(7)
must be unchanged as the systems are uncoupled. How-

ever, the cross correlations renormalize as

d8/di =Ag

dg/dl =~g —Cgg,

(i 7)

(i8)

This Aow has one positive eigenvalue

x,= g*Jw/~~' Jze (2i)

Therefore, infinitesimally small decorreIations in the bare
random potential ~row under renormalization. On long

scales L&&Lq-8 ', with 8 a linear combination of Bo
and br, g(L) vanishes and o(L) saturates. The two sys-

tems then appear substantially diff'erent and will have

essentially independent susceptibilities, with bg(L)bg(L)
0 for large L. There will, however, be residual cross

correlations associated with the finite renormalization of

These effects can best be probed by changing the tem-

perature of one sample slightly by BT. The same ex-
ponent Xq in Eq. (21) controls the crossover, and for sys-

tem sizes L)&Ls(bT) ', g(T) and g(T+bT) will be

roughly independent. If BT&& T~ —T, the temperature
dependence of g will probe statistically similar variations
of g as did the field direction dependence of g(H).

Physically the source of the sensitivity to H and T
changes are quite different. The former is due to the
changes in mean position of the lines while the latter is

more subtle: It is caused by the entropic contributions to
the free energy, which drastically changes the effective
random potential on long scales. Although this has been
predicted for a variety of random systems [15,18] and

supported by numerical and approximate renormalization

with ~—=e+ (o —cr)/2irx'.
To investigate the effect of weak decorreiation of the

random potentials in the glass phase, we linearize the re-
cursion relations around the vortex glass fixed point g*.
For small decorrelation b o —o« 1 and b~ =g —g&& 1,
we have

d6' =2Ag *6@,
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group calculations, this to our knowledge, is the first time

an analytic calculation has yielded the hypersensitivity to
temperature changes.

We close with a comment on dynamics: Recently, a
number of authors have claimed that free energy barriers
in this system grow as various powers of logL [7,8, 13].
An explicit dynamic renormalization-group calculation
[11,28] found that the dynamic exponent z =2+ I.gs for
T ~ Tg, yielding a nonlinear resistivity, dE/dJ ', where
E is the emf generated by a uniform current J applied
perpendicular to the (x,z) plane. However, because the
1+1 dimensional vortex glass phase is controlled by finite
temperature fixed line rather than a zero temperature
fixed point, the barriers are not well defined by the form
a(J) found. In the limit T 0, however, one finds [29]
z-I/T, which can then be correctly interpreted as bar-
riers growing as loIL.

The dynamics can also be used to probe the length
dependence of g. At finite frequency, co, scales of size
I -co 'i' are probed. Since the susceptibility g(ro) for
each correlation volume I will be essentially indepen-
dent, the variations in g(ro) for a sample of size L x L will

be hg(ru)-1JL-ro 'i'/L, crossing over to the static re-
sult only when I -L.

In this paper, we have analyzed some of the glassy
properties of randomly pinned flux arrays confined to a
plane. In the vortex glass phase, the magnetic suscepti-
bility is found to be strongly dependent on the external
field, temperature and specific sample, exhibiting varia-
tions with universal statistics.
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