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Transitions between Hall Plateaus in the Presence of Strong Landau Level Mixing
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%'e study the effects of Landau level mixing on the critical properties of plateau transitions in the

quantum Hall effect. Combining numerical results with analytical arguments, we conclude tkat for
noninteracting electrons the universality class of the plateau transition is unchanged in the presence of a
strong Landau level mixing.
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The plateau transition in the quantum Hall effect has
attracted much attention recently [1-5]. In brief, the
phenomenology of the plateau transitions is the following.
If one sweeps the perpendicular magnetic field applied to
a two-dimensional electron gas, a series of plateaus in cr„,,

are observed [6]. At the same time, o„„exhibits pro-
nounced Shubnikov-de Haas oscillations when the loca-
tions of its minima coincides with that of the plateaus.
Between these plateaus, 0„~ interpolates between the
quantized values, and tr„„peaks in the middle of the tran-
sitions [6]. By analyzing the temperature (T) and sample
size (W) dependence of the transition widths (AB), Wei
et al. [7] and Koch et al. [8] have demonstrated experi-
mentally that AB =Bomax[(T/To) ' ",(W/Wa) ' "1,
where Bo, To, and 8'0 are nonuniversal magnetic field,

temperature, and length, respectively. For a spin-
resolved, integer-plateau transition 1/zv=0. 42 [7] and
v=2. 3 [8]. (In the rest of this paper we will concentrate
only on integer-plateau transitions. ) This scaling behavior
indicates the existence of a continuous phase transition
(hereto referred as the plateau transition) at T=O [9].
The single diverging length at the transition ( cc l B
—B, ~

is the quasiparticle localization length.
Experimentally the Hall plateaus associated with oppo-

site spin orientations are not always resolved. This situa-
tion usually occurs when the magnetic field is relatively
weak or when the disorder is relatively strong [10,11]. In

a transition between two spin-unresolved plateaus

Acr„y = ~ 2e /h and o„shows a single peak. In a nice

experiment Wei et al. [10] demonstrated that for a spin-
unresolved transition I/zv=0. 21. Therefore, it raised
the possibility that the spin-resolved and spin-unresolved
transitions might belong to two diferent universality

classes. In this paper we address this possibility by study-

ing the effects of Landau level mixing on the critical
properties of the plateau transition. (In this paper we use

the phrases "Landau level index" and "5, spin index, "
and "Landau level mixing" and "spin mixing" inter-

changeably. )
Theoretically, Levine, Libby, and Pruisken [12] made

the first breakthrough in understanding the plateau tran-

sition. They pointed out that for noninteracting electrons
the long wavelength "transport action" for the spin-re-
solved plateau transition is an IV- 0 U(2/V)/U(IV)
&&U(IV) o model with a topological term (In t.he rest of
the paper we also restrict ourselves to noninteracting elec-
trons. ) They conjectured that with the topological term,
the theory possesses stable fixed points at (cr„„,cr„,, )
=(O, n)e /h (corresponding to the quantized plateaus)
and critical points at (const, n+ —,

' )e /h (corresponding
to the critical points between the plateaus). Unfortunate-

ly, calculation of the critical properties (either analytical
or numerical) using the a model is extremely diScuIt
[I 3].

Recently, considerable numerical progresses have been
made in studying the spin-resolved plateau transition [1].
Among them the "quantum percolation" model of Chalk-
er and Coddington [2] is particularly interesting. In that
work the authors demonstrated an electron delocalization
transition with v= 2.5+ 0.5. This result was recently
confirmed and refined by Lee, Wang, and Kivelson [4]
who obtained v= 2.4+'0.2. More recently, one of us [5]
proved that the network model can be mapped onto an

antiferromagnetic SU(2IV) spin chain, whose coherent-
state path-integral action is the a model. As a result, it

indirectly proves that the latter can produce a v that is

consistent with the experiments.
While a consistent picture is emerging for the spin-

resolved transition, the experiment by Wei et al. [10]
raised questions concerning the effects of spin mixing on

the critical properties of the plateau transitions. In the
present Letter we address this issue by combining analyti-
cal and numerical results. Our conclusion is that for
noninteracting electrons, in spite of a strong mixing, the

plateau transitions associated with each Landau level

remain distinct and the universality class of each transi-
tion remains unchanged.

To simplify the problem, let us consider a situation in

which two Landau levels (two spins) can mix. The ap-

propriate network then has two edge states (one for each
Landau level; see Fig. I). The direction of the drift ve-

locities for these states is the same. As discussed in Ref.
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FIG. 1. The network model for spin-unresolved transition.
The arrows on the solid and dashed links indicate the directions
of the edge velocities, and the open squares (nodes) enclose the
tunneling points.

[5], this network model can be mapped onto two coupled
SU(2N) spin chains in the representation where each spin

is characterized by a single column of the Young tableau
with height N. The Harniltonian is given by

H =g J,(x) Tr[S,(x+a)S,(x)]
x,a

—g Jlz(x) Tr[SI(x)S2(x)] .

FIG. 2. The phases of two ferromagnetically coupled spin
chains: (a) Three "spin-Peierls" phases at J~ =0 and (b) two
"spin-Peierls" phases and an AKLT phase for J~ &&1.

phase which remains translation invariant is the SU(2N)
analog of the Haldane phase [l4]. Thus the phase struc-
ture and the universality class of the phase transition are
unchanged in the presence of a strong Landau level mix-

ing.
This result can also be derived from the following con-

siderations of the free electron Hamiltonian,

1
H = dx — y, (8;+iA;) y, + V(x)y, tll,

m

Here a is the lattice constant, a 1,2 is the Landau level

index, and Tr[SS']=g, bS,Sb' where S,(a,b = I,
. . . , 2N) is the SU(2N) generator. In Eq. (I) all the J's
are positive; hence the intrachain interaction is antiferro
magnetic while the interchain one is ferromagnetic
Moreover, while J|2 is translation invariant J| and J2 are
not. They satisfy J,(x) =J,(x+2a). In this model J,
measures the strength of quantum tunneling between

edge states that have the same Landau level index a, and

Jiz measures the strength of Landau level mixing. Fol-
lowing Ref. [5) we define

R,—= [J,(x+a) —J,(x)]/[J,(x+a)+J,(x)l

and

J&=4&Jig(x» / ZJ, (x+a&+J,(x&
a

When Ji =0 there are two transitions as we tune Rl and

R2 while keeping Ri & R2. All three massive phases
break the translation symmetry and correspond to three
"spin-Peierls" phases [see Fig. 2(a)]. We identify these
three phases with three adjacent plateaus, and the two
transitions with the corresponding plateau transitions.
For Ji)) I (strong Landau level mixing) the vertical spin
pairs couple to form the M =2 representation of SU(2N).
At long wavelength and low energy the remaining degrees
of freedom are those of a single M =2, SU(2N) antifer-
romagnetic chain. In this case there are also two transi-
tions as we tune the ratio between the strengths of two
nearest-neighbor bonds. Among the three massive
phases, two break translation symmetry and they corre-
spond to two spin-Peierls phases [see Fig. 2(b)l. The

+H(x) ' I/fgo'gptlrp (2)

where y, is the spin- 2 electron annihilation operator,
e;lt);A~ is the strength of the applied magnetic field, and
V(x) is the one-body random potential. The third term
in Eq. (2) describes the Zeeman splitting/spin mixing.
When H„~ =0 and (H, )WO the spin up and down elec-
trons are decoupled and undergo separate plateau transi-
tions. When (H, ) =0 these two transitions coincide. Our
question is, If (H, ) =0 while H, » are big, how many
transitions are there, and what are their critical proper-
ties? For simplicity, let us consider H(x) as a random
3D vector with a large fixed norm. Let us write
H(x) =iH(x)izt(x)crz(x). Here z(x) =(zl(x), zz(x))
is a spinor field chosen so that z t(x)cd(x) lies in the x-y
plane. After a local SU(2) gauge rotation y Uy with

U=(,", "„~),the Hamiltonian becomes

H=) dx 1 y'(a;+iA;+U'a; U)'y
2m

+V(x)tlty+iH(x)ill'cr, y . (3)

If we ignore Uttl;U, Eq. (3) reduces to the H„~ =0 case
discussed above, and hence describes two well-separated
transitions both belonging to the universality class of the
spin-resolved transitions. When the direction of H(x)
changes slowly in space, (Ut8;U),p(( l. The diagonal
part of Utt);U induces a small effective random magnetic
field which is irrelevant in the presence of a strong uni-
form external field. The remaining off diagonal parts of
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Utt);U have two effects: (a) They slightly renormalize
V(x) and ~H(x)( and (b) they mix the two spin com-
ponents. Thanks to the large (H(x)~, both effects are ir-
relevant. (This is supported by our numerical results that
a weak mixing is irrelevant in the presence of a strong
Zeeman splitting. ) Again, the conclusion is that strong
Landau level mixing does not change the universality
class of the plateau transitions.

To reconcile the above result with experiments, we

present numerical results for the network model. %e
show that even for the strongest Landau level mixing, it
is possible to mistake the case of two nearby transitions
each having v=2. 3 for the case of a single transition
with a significantly larger v.

In Fig. 1 each link is associated with a 2x2 unitary
matrix U=exp(ip)exp(igfi cr), where p and g are ran-
dom phases in the interval [0,2x), n is a random three-
component unit vector, and cr are the Pauli matrices. As

an electron traverses a particular link, we multiply (~,'),
the probability amplitudes of finding an electron in the

pair of edge states, by U. We found that it is sufficient to
parametrize n = (O, sinri, cosr)). Moreover, we have

checked that the randomness in the tunneling strength is

irrelevant as in the single channel case [4]. Thus, we re-

strict the transfer matrices at all tunneling points to be
the same, and have the form

In general, the presence of such operators will prevent
data collapsing. However, we show in Figs. 3(a) and
3(b) that this is not the case. In each case there are two
transitions as a function of E at E, ~

)E,2 (data shown

are for E )E, ~
and E & E,2). In the insets of Figs. 3(a)

and 3(b), we show that the exponent deduced from
(E E,—) agrees with that of the spin-resolved transi-

tion, v=2.4+0.2. A more stringent test of whether the
universality class remains unchanged is to compare the
scaling functions. If we compare the scaling curves ob-
tained in Figs. 3(a) and 3(b) (symbols) with that of the
spin-resolved transitions (solid line), we find that they do
not coincide. As discussed above, we attribute the
discrepancy to finite size eAects caused by irrelevant
operators. Empirically, we find that to a very good ap-
proximation the scaling function V(g /M, g;„/M) de-

duced from Figs. 3(a) and 3(b) is related to the spin-
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In the actual calculations we let y, =y, +(E —E, ) where

y, =ln(42+ I), )E~ —E2~=6, and —W/2 & ri & W/2.
(Physically 6 should be identified with the Landau level

separation or spin Zeeman splitting, while W is the Lan-
dau level mixing. ) The case of maximum coupling corre-
sponds to W 0.5x. We follow the standard procedures
of finite size scaling analysis [2,4]. The normalized local-
ization lengths gsi(E)/M (gM is the localization length
on a cylinder of width M) for different values of W, 5,
and E are calculated numerically using the transfer ma-

trix method. The "thermodynamic" localization length
is obtained by demanding that all data collapse onto a

single curve when (~(E)/M is plotted vs g (E —E, )/M.
This curve represents the scaling function, and E, marks
the critical point. By requiring g a: ~E —E, i " in the
vicinity of E„one can extract the critical exponent v.

In the following we present these results for W=0.5x,
A=O. O [Fig. 3(a)] (the spin degenerate case) and W
=O. lz, 6=0.4 [Fig. 3(b)]. If the transition is governed

by a fixed point with one relevant operator and a number
of nondegenerate irrelevant operators [3], the critical
g~/M should become M independent for sufficiently large
M's. Unfortunately, we have not achieved this in the
present calculations. For M=8 128 we observed a
slight residue M dependence. %e take it as an indication
that we are still seeing the eAects of irrelevant operators.
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FIG. 3. The scaling plots. Insets: in( (E —E„) vs

Iu~E —E„,~
The data are take. n above the upper (E,~) and

below the lower (E,2) transitions. The two critical points are
found at (a) E, ~

=0.23 and E,2= —0.28 for &=0.5n and
6=0.0 and (b) E, ~

=0.45 and E,2= —0.02 for I4'=O. in and
4=0.4. The solid lines in (a) and (b) are the spin-resolved

scaling function [4I. (c) Assuming a single transition at E, =0
for 8'=0.5z and h, =0.
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resolved scaling function 5'(g /M) via P(x,y)-X(y)
xQ(e(y)x}. Here A, and e are scale factors, and g;„ is
the crossover length associated with the leading irrelevant
operator. The fact that despite the presence of irrelevant
operators data collapsing works implies SL/dy, de/dy « l.
Universality requires that lim~ 0)t, (y) lim, —oe(y)-1.
which can be realized when either (;„(E)« I or M
An indication that this is indeed happening can be ob-
tained by noting that as W/5 is reduced in going from
Fig. 3(a) to 3(b), the scaling curve gets closer to the
spin-resolved result. To prove that both )1, and e do ap-
proach unity for the cases studied, one needs to study sys-
tems with a much larger M, a task that is beyond our
current computing capability. The fact that the correc-
tion to scaling has more effects on (st/M than on v is
consistent with the experimental findings that v seems to
be universal while the critical conductivities are not [15].
For both cases studied, if the energy falls between the
upper and lower critical points (i.e., E,z (E (E,1),
gtu(E)/M becomes quite insensitive to the system sizes
studied [16]. Were it not for the analytical arguments,
one could mistake those as indicating the existence of a
whole interval of critical points or a metallic phase.

To address the apparent inconsistency between the
theory and experiment, in Fig. 3(c) we show the scaling
plot and g vs E for W 0.5n and 6 0 assuming there
is only a single transition at E 0. The quality of the
data collapsing is noticeably worse than that in Fig. 3(a).
Moreover, the resulting g shows saturation near E 0.
However, if one uses the limited linear portion of the
In( vs In~E~ plot to determine an exponent, one gets
v=5.8. This value is in reasonable agreement with the
current experimental result, if one assumes that the
dynamical exponent remains unchanged between the
spin-resolved and spin-unresolved transitions [10]. Hence
if the Coulomb interaction does not qualitatively change
the present results, we conclude that the apparent "new

universality class" observed in the spin unresolved-pla-
teau transitions is an artifact due to the limitation in the
experimental resolution In that c. ase, with improved
resolution one should be able to show that the spin-
unresolved transition actually consists of two consecutive
plateau transitions, each having the same v as in a spin-
resolved transition.

The conclusion that Landau level mixing does not
change the universality class of the plateau transition
bears an important implication on the topology of the
quantum Hall effect phase diagram [3]. Specifically, in

Ref. [3] the authors assumed that when the system
makes a transition between one plateau and another, it
has to pass by all intervening plateaus. For example, in
the integer quantum Hall eA'ect this "selection rule" im-
plies that in order to get to o ~ =0 from a„~ =2e /h, the

system must pass the cr~~ e /h plateau [17]. Our work
adds supports to this assumption.
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