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Relativistic EfFects in Zn, Cd, and Hg
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We study the eKects of relativity on the stability of group II elements Zn, Cd, and Hg in face-
centered cubic (fcc) and hexagonal close-packed (hcp) structures. A comparison of nonrelativistic
and scalar-relativistic results for both the fcc and the hcp phases of these elements, obtained self-
consistently, clearly shows that the change in the most stable crystal structure Rom the hcp to the
fcc-like rhombohedral, as one goes from Zn to Hg, is due to relativity. The stability of different
structures is explained in terms of the increase in s-p hybridization resulting from relativity.

PACS numbers: 71.10.+x, 71.20.Cf, 72.15.Eb, 71.55.—i

Many electronic properties of simple metals such as Be,
Mg, Zn, Cd, and Hg are similar because of their closed
s-shell atomic configuration, nsz. The similarity in the
electronic structure of group II elements is also refiected
in the fact that all of them have hexagonal close-packed

(hcp) structure as their ground states except for Hg,
which has a rhombohedral structure (at ambient temper-
ature). The electronic origin of the change in the most
stable structure from the hcp to the rhombohedral, as
one goes from Be to Hg, is not obvious.

The apparent anomaly exhibited by the crystal struc-
ture of Hg vis a vis other-d-ivalent simple metals cannot
be attributed entirely to the presence of 5d electrons be-
cause Zn and Cd also have 3d and 4d electrons, respec-
tively, close to their s levels. However, we know that
although atomic Hg has a closed s-shell configuration
(5di06sz) similar to other group II elements, the elec-
tronic structure of atomic [1) as well as bulk Hg [2, 3)
depends critically on relativity due to its high atomic
number. As the importance of relativity increases with
increasing atomic number, it is possible that the appar-
ent anomaly exhibited by the crysta1 structure of bulk
Hg may have a relativistic origin.

The relativistic effects on the electronic structure of
atomic Zn, Cd, and Hg are well documented [1], whereas
earlier theoretical studies [2] of these effects on the band
structure of bulk Hg are based on non-self-consistent
charge densities and the treatment of 5d electrons as core
electrons. In a recent work [3) we have studied the ef-

fects of relativity on bulk Hg using charge self-consistent
calculations that treated 5d electrons as valencelike and
thus allowed the 5d bands to hybridize with the 68-6p
bands. But the calculations reported so far were con-
fined to face-centered cubic (fcc) or fcc-like rhombohe-
dral geometry, and they did not examine the energetics
of diferent structures. Also, it appears that there has
been no systematic study of relativistic efFects in Zn, Cd,
and Hg, although such a study can be helpful in explain-
ing the change in stable crystal structure from the hcp
to the rhombohedral as one goes from Zn to Hg. The

present study is intended to improve our understanding
of the electronic structure of group II elements and pro-
vide some explanations for the stability of bulk Hg in the
rhombohedral structure.

In this Letter we examine the effects of including the
relativistic terms, the so-called mass-velocity and Dar-
win terms, on the electronic structure of Zn, Cd, and Hg
in both fcc and hcp structures by carrying out charge
self-consistent calculations using the linear mufIin-tin or-
bital (LMTO) method in the atomic-sphere approxima-
tion (ASA) [4, 5], including the combined correction (CC)
terms [4]. The calculations are carried out with the
nonrelativistic Schrodinger equation as well as with the
scalar-relativistic Dirac equation. We also consider M,
4d, and 5dI electrons of Zn, Cd, and Hg, respectively, to
be valencelike and thus allow the (n —1)d bands to hy-

bridize with the ns-np bands.
Based on our calculations, described below, we find

that (i) relativity makes the fcc phase of Hg more stable
than the hcp phase, (ii) the nonrelativistic calculations
stabilize the hcp phases of Zn, Cd, and Hg, and (iii) the
stability of different phases is determined by the change
in s-p hybridization due to relativity.

The nonrelativistic (NR) and the scalar-relativistic
(SR) self-consistent electronic structure of hcp and fcc
Zn, Cd, and Hg are calculated with the LMTO method,
including the CC terms. The k-space integrations are
carried out with 256 and 456 k points in the irreducible
wedges of the Brillouin zones of the fcc and the hcp struc-
tures, respectively. The exchange-correlation potential is
parametrized as suggested by von Barth and Hedin [6].
To minimize the ASA-related errors in our calculations
we do not introduce symmetry lowering relaxations, i.e.,

(i) for the hcp structure we use the ideal c/a ratio, and

(ii) for the fcc-like rhombohedral structure we keep the
angle between the axes, a, Axed at its fcc value.

The most important results of our calculations are
shown in Fig. 1, where we show the difference in the
equilibrium total energies between the hcp and the fcc
structures for NR as well as SR cases,
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In Eq. (1), Eh~~~~&„& is the total energy per atom of the

hcp (fcc) solid calculated with the LMTO method, in-

cluding the CC terms. A positive (negative) b,EQgp-f~
indicates that the fcc (hcp) phase is more stable than the
hcp (fcc) phase. The NR structural energy difFerence,

shown in Fig. 1(a), clearly demonstrates that without
relativity Zn, Cd, and Hg prefer the hcp structure over
the fcc structure. Although NR EEh p f decreases as
one goes from Zn to Hg, the nonrelativistic hcp Hg is still
quite stable, by —0.7 mRy/atom, in comparison with the
nonrelativistic fcc Hg.

The inclusion of relativity changes the structural en-

ergy differences quite dramatically as can be seen from

Fig. 1(b). Since the relativistic effects on Zn are ex-
pected to be minimal, it is not surprising to find the
scalar-relativistic hcp Zn to be more stable than the fcc
Zn, although b,Ehz"

&
has changed from its NR value of

—1.42 rnRy/atom to —1.03 mRy/atom. Within the accu-
racy of our calculations the total energies of SR Cd in the
fcc and the hcp phases indicate that the two phases are
essentially degenerate. Based on our calculations, in the
following we argue that the hcp Cd should be more stable
than the fcc Cd, in spite of the fact that the calculated to-
tal energies indicate the two structures to be degenerate.
However, for SR Hg we find that the fcc phase is more
stable than the hcp phase by 0.4 mRy/atom, as shown
in Fig. 1(b). Thus the change in the most stable crystal
structure from the hcp to fcc like rhombohedhul -structum,
as one goes from Zn to Hg, is due to n.latioity.

In order to understand the stability of different phases
of Zn, Cd, and Hg, it is instructive to consider the sects
that relativity has on the electronic structure of Hg. We
know that the most dominant eÃect of relativity is to
lower the s potential, which in turn can induce substan-
tial 8-d hybridization leading to electron transfer from
d ~ s [7, 8]. Thus the amount of s-d hybridization can
be significantly different between NR and SR results, but
within the scalar-relativistic framework the localized na-

-1.5

FIG. 1. The total energy difference between the hcp and
the fcc phases of Zn, Cd, and Hg obtained with the LMTO
method (a) nonrelativistically and (b) scalar relativistically.

ture of the d electrons ensures that the s-d hybridization
as well as the electron transfer from d ~ s cannot be
greatly affected by a simple rearrangement of Hg atoms.
It suggests that the stability of SR Hg in the fcc phase
rather than in the hcp phase, with both the fcc and the
hcp structures having identical atomic arrangements up
to second nearest neighbors (the difference being in the
stacking sequence of (111)planes only), is not due to the
change in the s-d hybridization. On the other hand, the
lowering of s potential also changes the s-p hybridiza-
tion and the electron transfer from s ~ p, and a sirn-

ple rearrangement of atoms can significantly affect the
spatially extended s electrons, which in turn can sub-
stantially change the s-p hybridization and the electron
transfer from s ~ p. Indeed, a comparison of our results
for the fcc and the hcp phases for both NR and SR Zn,
Cd, and Hg reveal that the change in electron transfer
from d ~ s (= 0.003 electrons) due to change in struc-
ture is an order of magnitude smaller than the electron
transfer from s ~ p (- 0.035 electrons).

Now the stability of difFerent phases of NR and SR
Zn, Cd, and Hg can be understood in terms of increase
in s-p hybridization. The increase in s-p hybridization
makes the electronic charge distribution more "covalent-
like, " thereby enhancing stability. The change in s-p hy-
bridization in (n —1)dmns2 metals, Zn, Cd, and Hg, can
be measured in terms of the number of p-like electrons
in these metals. Thus an increase (decrease) in the nurn-

ber of p electrons as one goes Pom the fcc phase to hcp
phase ujould indicate that the hcp phase is more (less)
stable than the fcc phase.

To show that NR calculations of Zn, Cd, and Hg lead
to increased s-p hybridization as one goes from the fcc to
the hcp phases, we plot in Fig. 2(a) the corresponding
number of s and p electrons in these metals. Figure 2(a)
shows that the number of p electrons in the hcp phases
of NR Zn, Cd, and Hg is consistently larger than the
corresponding values in the fcc phases, which indicates
the stability of the hcp phases.

Since relativistic effects become more important for
heavier elements, we expect the s-p hybridization in Zn to
be affected the least among the three elements. Accord-
ingly, we find that the scalar-relativistic hcp Zn is still
more stable than the fcc Zn, as evidenced by the number
of p electrons in the hcp Zn shown in Fig. 2(b). Simi-
lar analysis for SR Cd clearly suggests that the hcp Cd
should be more stable than the fcc Cd, in agreement with
the experimentally observed ground state. The struc-
tural energy difFerence, shown in Fig. 1(b), however, in-
dicates that in the case of Cd the two structures, fcc and
hcp, have essentially the same energy. Based on the fact
that the self-consistent ASA potential, which determines
the s-p hybridization, is quite accurate (i.e., close to the
potential obtained with no-shape approximation [9]), we
think that a more accurate total energy functional than
the one used in our calculations, such as ASA + muifin-
tin correction [10], would show the hcp Cd to be more
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FIG. 2. The number of s and y electrons in the fcc and
the hcp phases of Zn, Cd, and Hg obtained with the LMTO
method (a) nonrelativistically and (b) scalar relativistically.

stable than the fcc Cd. Within the ASA approach one
can also use the local-force theorem to obtain reliable
structural energy differences [ll]. In the ease of SR Hg
the number of p electrons in the fcc phase is larger than
in the hcp phase, which confirms the stability of the fcc
phase over the hcp phase. As shown in Fig. 2 the sub-
stantial increase in the number of s electrons for SR Hg
is due to the deepening of the s potential, and the sub-
sequent electron transfer from d -+ s.

Further insight into the effects of relativity in Zn, Cd,
and Hg can be obtained by examining the changes in
the individual terms that make up the electronic charge
density, p(r), given by [12, 13]

). &Rl.( &)~R1„RL( )&R"l, (r&)P P P~

RL,R'L'

where y~(rR), n~ &,1,, (E), R, and L are the LM-
TOs, the density matrix, site, and angular momentum
indices, respectively. The superscript P denotes the most-
localized tight-binding (TB) representation of Ref. [12].

In Fig. 3 we show NR and SR s-TB LMTO in the z
= 0 plane of the hcp Zn and the fcc Hg calculated at
their respective equilibrium lattice constants. Because of
the contributions coming from the neighboring sites the
orbital is spherical only close to its oem site. A compari-
son of Figs. 3(a) and 3(b) shows that the changes in the
s-TB LMTQ of the hcp Zn due to relativity are con6ned
well inside the atomic sphere, while changes outside the
atomic sphere are very small. These changes are, how-

ever, responsible for bringing about 0.8'Fo contraction
in the lattice constant of the hcp Zn as shown in Table
I, vrhere are compare the calculated equilibrium lattice

FIG. 3. The s-TB LMTO of hcp Zn and fcc Hg in the
z = 0 plane calculated nonrelativisticaliy [(a) and (c)] and
scalar relativistically ((b) and (d)] at their respective equilib-
rium lattice constants. The negative-value contours are indi-

cated by the dotted, dashed, dot-dashed, triple-dot-dashed,
and long dashed lines with values corresponding to —5, —15,
—25, —35, and —45, respectively, while the positive-value con-
tours are denoted by solid lines at an interval of 10. All values
have been multiplied by 10 .

TABLE I. The nonrelativistic (NR) and the scalar reia
tivistic (SR) equilibrium lattice constants a (in atomic units)
and the bulk moduli B (in Mbar) for the fcc and the hcp
phases of Zn, Cd, and Hg calculated with the LMTO method,
including the combined correction terms. The experimental
lattice constants and the bulk moduli are also given. The
numbers in parentheses are the experimental values of c/a
for hcp Zn and Cd, and the angle between the axes a for
rhombohedral Hg.

Zn a
B

Cd a
B

Hg a
B

fcc

7.239
0.96
8.309
0.63
8.680
0.65

hcp

5.095
0.50
5.848
0.33
6.112
0.33

fcc

7.180
1.02

8.176
0.71
8.503
0.48

hcp

5.053
0.52
5.761
0.36
6.039
0.21

Expt.

5.028 (1.856)
0.598

5.633 (1.886)
0.467

5.652 (TO 45')
0.382

constants and the bulk moduli of Zn, Cd, and Hg with
the experimental values. In the case of the fcc Hg, rela-
tivity introduces changes not only well inside the atomic
sphere but also outside of the atomic sphere, which re-
sult in more than 2Fo decr'ease in the lattice constant of
fcc Hg. It is interesting to note that the lattice constant
changes by only 1.2Fo in the hcp Hg.

The relativistic changes in the densities of states
(DOS) of the fcc as well as the hcp Zn and Hg are shown
in Fig. 4. As expected, the efFect of relativity on Zn is
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lying physics governing the stability of different phases,
namely the increase in s-p hybridization, is unlikely to
change.

In conclusion, we have shown that the change in the
most stable crystal structure from the hcp to the fcc-like
rhombohedral structure in group II, as one goes from Zn

to Hg is due to relativity. We have also shown that the
increase in the s-p hybridization resulting from relativity
is responsible for the stability of the scalar-relativistic fcc
Hg over the hcp Hg.

This work was supported by the U.S. Department
of Energy under Contract No. W-7405-Eng-48 with
Lawrence Livermore National Laboratory.
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FIG. 4. The nonrelativistic and the scalar relativistic total
densities of states of Zn [(a) and (b)] and Hg [(c) and (d)] in
both the fcc and the hcp phases calculated at their respective
equilibrium lattice constants.

much smaller than the corresponding efFect on Hg. The
difFerences between NR and SR DOS arise from the move-
ment of the centers of I bands due to relativity and their
subsequent hybridizations. The SR DOS also show that
the centers of the d bands of Zn and Cd are deeper in the
hcp phases than in the fcc phases. However, in Hg it is
the fcc phase which has the lower d-band center than the
hcp phase. The movement of the p-band center is con-
sistent with the change in the s-p hybridizations; a lower

(higher) p-band indicating increase (decrease) in the s-p
hybridization.

We would like to point out that the electronic struc-
ture of Zn, Cd, and Hg described in this Letter, can be
improved in a number of ways. Some of them are (i) use
of no-shape appro)cimation for the potential instead of
spherically symmetric potential used in the ASA, (ii) the
inclusion of spin-orbit terms, and (iii) the total energy op-
timization with respect to c/a and a for the hcp and the
rhombohedral structures, respectively. These improve-
ments can be quantitatively significant but the under-
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