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We give a new prescription for performing random walks in configuration space for lattice fermion
problems. Imposing a suitable condition for the wave function on nodal boundaries in configuration
space enables us to devise a generalization of the fixed-node quantum Monte Carlo method, as it
has been developed for continuum problems. It does not suer &om the sign problem and provides
upper bounds for the energy of different candidates for the ground state. %e present new results
for the Hubbard model ofF half 611ing as a demonstration of the method.
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Interacting electrons are key ingredients for under-
standing the properties of various classes of materials,
ranging from the energetically most favorable shape of
small molecules to the magnetic and superconducting in-
stabilities of lattice electron systems, such as high-T, and
heavy fermion compounds. These properties are diffi-
cult to extract from even the most simple model Hamil-
tonians. The reason is that exact diagonalizations are
restricted to relatively small systems, while quantum
Monte Carlo (QMC) methods are plagued by what is
commonly referred to as the sign problem [1,2].

The origin of the sign problem is that the Pauli princi-
ple dictates a sign change of the wave function under per-
mutation of any pair of fermions. As a result, when the
ground-state energy or the partition function of a fermion
model is calculated by means of a QMC method, one ob-
tains contributions of different sign that tend to cancel.
Although the problem surfaces in different ways in differ-
ent methods, there is one common underlying problem.
One can keep track of the sign of each contribution, but
one needs to determine a digemrice between the vari-
ous contributions that is exponentially smaller than the
positive and the negative contribution separately [e.g. ,
in the case of a partition function, this ratio is propor-
tional to exp( —cPN), where P = 1/kBT, N the number of
fermions, and c a constant]. In practice, this severely lim-
its the applicability of such QMC methods to relatively
high temperatures and small system sizes [1,2], except in
cases (like the half-filled Hubbard model [3] and the one-
dimensional Hubbard model [4]) in which the fermion
problem can be mapped onto a boson problem.

Ways to deal with the sign problem are under ac-
tive investigation [1,2,5—7]. In the so-called grand-
canonical MC method [6], one first performs a Hubbard-
Stratonovich transformation, or a discrete equiva-
lence [3], and then integrates out the fermions. This
leaves a boson problem. Although a boson system by
itself does not have a sign problem, the determinant that
comes in via the transformation causes large positive and
negative contributions to be present; this partial cancella-
tion tends to make the final answer inaccurate. There is a
proposal [7] to take absolute values of the sampled quan-

tities, while keeping track of the "average sign. " Here,
the problem is that the average sign rapidly vanishes for
low temperatures. Fahy and Hamann [8] have recently
elucidated the intricacies of the sign problem by formu-
lating grand-canonical MC as a diffusion problem in the
space of Slater determinants, and comparing it to Green's
function MC (GFMC), which can be formulated ss a dif-
fusion problem in configuration space.

In the GFMC method, the ground-state wave function
is filtered out from a trial wave function by applying a
suitable projection operator to it. This method has been
successfully applied to the calculation of ground-state
properties of various models, such as the two-dimensional
antiferromagnetic Heisenberg model [1,9], but a recent
review [1] conjectured that "it is likely that the minus-

sign problem is detrimental for the GFMC method to be
applicable to lattice fermion problems. "

In this paper we take up this challenge and show that
a fixed node GFM-C method can be successfully devel-

oped for lattice fermions. The main idea of a fixed-node
method [10,11] is to force the random walkers, with which
the wave function is sampled, not to cross nodal bound-
aries, where the wave function changes sign. These nodal
boundaries have to be provided by a trial wave function

gT. Since each walker only samples a nodal region where
the wave function is of one sign, there is no partial can-
cellation of contributions with different sign, and good
statistics can be obtained. The method gives an estimate
for the ground-state energy and wave function (with the
proper fermion antisymmetry), given the location of the
nodal boundary of QT . As a result, the method is vari-
ational in that it gives a true upper bound to the exact
ground-state energy.

The 6xed-node GFMC method was developed by
Ceperley and Alder [10] for the case in which the electron
coordinates are continuous variables, as is the case in the
electron gas. It gives very accurate values for the ground-
state energies of small molecules [ll]. In the continuum

approach, the Schrodinger equation is solved exactly in
each nodal region, with the boundary condition that the
wave function vanishes identically on the nodal bound-
ary of @T, a surface of codimension 1 in configuration
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Choosing ip close to the ground-state energy [14] and
taking r small enough [15] ensures that eventually the
ground state will dominate. This projection is imple-
mented in configuration space (Rj, which should not be
confused with the original lattice in real space: a point
in (R) specifies the positions of all the labeled fermions
on the real lattice. For the wave function at point R
we write Q"(R) = (R]Q"), and for the Hamiltonisn op-
erator H(R, R') = (R]'R]R'). To obtain good statistics,
importance sampling is used. The Green's function

G(R R) = QT'(R)F(R R)QT, (R) (2)

is introduced. The mixed estimate for the expecta-
tion value of an operator 0 then becomes (Q"]G~QT)
x(y"]yT )-', where [16]

(0"I&le) =) O(R ) G(R' R'-i)eT(Rp) (3)

Here O(R) = (R]G]QT)@T, (R) is the local value of 8,
and R = {Rp,Ri, Rs, ..., ~) is a path in configuration
space. In this way, one samples more in regions with
large contributions. If we split the Green's function in a
part P which satisfies QR P(R, R') = 1 and a remaining
part m, which we can choose to depend only on R',

G(R, R') = P(R, R')m(R'), (4)

we have a random walk interpretation. The stochastic
matrix P defines the transition probabilities, and m is
the "multiplicity" of the walkers As discussed b. y Trivedi
and Ceperley [9] and Hetherington [17], in order to ob-
tain a proper statistics the ensemble of walkers is up-
dated regularly by letting walkers die or multiply ac-
cording to their value of m. H(R, R') (and hence P)
connects points in configuration space. For example, for
the Hubbard model with nearest neighbor hopping am-
plitude t, H(R, R') = t if R' and R d—ifFer by moving

space [12]. Extending the method to lattice fermions is

far from trivial, since QT generally changes sign in be

tipeen points of a discrete con6guration space. As a re-

sult, a lattice Hamiltonian fundamentally connects points
in diff'eon, t nodal regions, and to implement the fixed-
node idea, one is forced to simulate a different efFective

Hamiltonian 'M, ir than the Hamiltonian '8 whose ground-
state energy one wants to calculate [13]. In the earlier
approach by two of us [13], this made the method non-

variational, but we show here that it is possible to in-

troduce a "nodal boundary potential term" V„b in 'M, p
which makes the method variational.

We now outline our method. In GFMC, one applies
a projection operator E = 1 —7. (R —ip) to filter out
the ground state from a trial wave function. After ri

iterations the trial state has evolved to

e(R)
+,(R}

4,(R')

+(R')

FIG. 1. The "lever rule" of Eq. (5). The point where the
linear interpolation of the wave function @ vanishes must co-
incide with the point where the linear interpolation of the
trial wave function iver vanishes.

over one labeled electron by one lattice unit in real space
and H(R, R') = UN~ if R' = R, with N~ the number of
doubly occupied sites.

If QT has different signs in R and in R', then G(R, R')
is negative [see Eq. (2)]. This is the cause of the sign
problem: an expectation value as calculated in Eq. (3)
is a sum of a large number of positive and negative con-
tributions. Therefore, we do not want to perform steps
across a nodal boundary. Unlike in the continuum case,
where very small steps in time and in configuration space
can be made, these steps are fundamentally present in

the Hamiltonian of a lattice problem, and therefore in

the projection operator E in Eq. (1).
Our crucial new point is that we make a suitable

choice of boundary conditions in configuration space [18].
We require that the wave function to which the system
evolves satisfies

@(R') QT'(R')

&(R) &T(R)' (5)

where R and R' are configurations on either side of a
node, and where QT is the trial wave function. This
can be viewed as pinning down the nodal boundary in a
point between lattice points. The precise nodal point is
the point where a linear interpolation of the trial wave

function vanishes. The requirement (5) can be viewed as
a "lever rule" for the wave function. This is depicted in

Fig. 1.
Now, consider the Schrodinger equation

) H(R, R')Q(R') = Epg(R)
Rl

(6)

where the nodal boundary potential is given by
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The summation over R' involves terms with R' in the
same nodal region as R [we denote this by R' E JV(R)]
and terms with R', which can be reached from R by one
step allowed by K(R, R'), acmss the nodal boundary
[denoted as R' c BJV(R)]. If we now impose condition (5)
and eliminate @(R') in the latter terms, we can write '8@
instead as 'R,sg, with(,)

H(R, R') + V„b(R)blrIr, R' c Af(R),
0, otherwise,
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FIG. 2. Fixed-node ground-state energy for a system of
free electrons as a function of the Gutzwiller factor that is
included in the trial wave function. The error bars give 1
standard deviation in the statistical accuracy. This system
has 24 electrons on 32 sites of a square lattice of the type
described in Ref. [13].

V„b(R) = ) H(R, R')
R' eBN (R)

To understand the effect of this term, note that for the
Hubbard model the matrix elements H(R, R') in Eq. (8)
equal t„while th—e ratios @T (R')/QT (R) in this sum are
negative. Hence V„b(R) acts as an on-site repulsive po-
tential in configuration space that suppresses the wave
function in points which are close to nodes. The same
suppression is required by those hops which are present
in R but which are replaced by V„b in 'R,g. These kinetic
terms force the wave function to be smooth and thus to
be small near a node. In the continuum limit, the effect
of V„b is equivalent to the usual prescription [10] that Q
vauishes on the nodal boundary.

The terms in the mixed estimator (Qoj'R]@T), associ-
ated with hops across the nodal surface, are identical to
those arising from the nodal potential in (Qo['Reg[QT);
hence the ground-state energy expectation values of the
Hamiltonians are the same: (@o['R]gT ) = (@o]&ca[MT).
Therefore, we can do the simulation entirely with 'R,tr,
which only contains hops ioithin one nodal region. Solv-
ing for the ground state of 'R, ir and measuring the energy
of the same Hlniltonian in that state, one therefore does
not encounter a sign problem, even though by construc-
tion the wave function so obtained does have the proper
fermion antisymmetry. This procedure gives the lowest
energy of the true Harniltonian in a restricted space of
wave functions with a specified nodal structure. This im-

plies that we have a variational principle (cf. Ref. [11],
section D).

It is instructive to first illustrate our approach by con-
sidering free electrons, that is, the Hubbard model with
U = 0. The exact wave function is a Slater determi-

FIG. 3. Ground-state energies for a system of 104 elec-
trons on a 112-site lattice. To study diagonal domain-wall

states, a lattice with periodic boundary conditions in the di-

agonal directions is used, as described in Ref. [13].Solid lines,
diagonal-wall state; dashes lines, commensurate state. ¹i
angles, variational Monte Carlo; squares, fixed-node Monte
Carlo. The lines are a guide for the eye, obtained by a spline
through the data points. The statistical errors are smaller
than the symbol size (1 standard deviation of the energy
is smaller than 0.1). The inset shows the energy difference
b,E = Eo —Eo, for variational (triangles) and fixed-node
(squares) Monte Carlo. Here, the statistical error can be es-
timated from the scattering of the data points.

nant of single-particle wave functions, but instead we
take an approximate trial wave function by including a
Gutzwiller factor [19].When the nodal boundary lies be-
tween two points in configuration space with a different
number of doubly occupied sites, the nodal boundary is
shifted away from its exact; location when g g 1. The
results in Fig. 2 illustrate the variational character of
our method: the energy is above the exact value for all

g g 1. Nevertheless, the minimum is relatively flat, in-

dicating some insensitivity to the exact location of the
nodal boundary, and the statistical errors for g not too
different from 1 are small.

We have used this method to investigate the stabil-
ity of diagonal domain walls in the ground state of the
two-dimensional Hubbard model. Hartr=-Fock [20] and
variational Monte Carlo [21] calculations indicate that
such structures on a mesoscopic scale are present. Our
question is whether this inhomogeneous ground state is
still stable with respect to a homogeneous one, if both
possible phases are allowed to lower their energy because
much more fiuctuations (only restricted by the nodes of
the trial wave function) are taken into account in the sim-

ulations. Taking the variational Monte Carlo results [21]
for the trial wave functions, we have calculated the ener-

gies as a function of U at doping b = 0.07. The results
are presented in Fig. 3.

The upper bounds for the energy are lower than those
of variational Monte Carlo and Hartr —-Fock calcula-
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tions. One also concludes that the stability of domain
walls is diminished compared to these previous calcula-
tions. The reason is that Hartr=-Fock and variational
Monte Carlo calculations tend to overestimate the influ-
ence of potential energy efFects, compared to kinetic en-
ergy efFects. The presence of domain walls corresponds
to a gain in magnetic energy compared to a homogeneous
phase and to a loss in kinetic energy. Allowing for more
fluctuations than in previous calculations reveals that the
presence of walls is less favorable than these earlier cal-
culations indicate. The ground state with walls is still
stable, however. Note that our energies are within the
statistical accuracy of the results of Ref. [13], while our
present method is variational and in addition allows us
to check self-consistently that ut in Eq. (1) coincides with

In conclusion, we have shown that the continuum fixed-
node GFMC can be successfully extended to the calcula-
tion of ground-state properties of lattice fermions. Clear
merits of the method are that it avoids the sign prob-
lem and that it obeys a variational principle. Other ad-
vantages are that it does not rely on a model-specific
transformation, and that it allows one to systematically
improve on existing approximate theories (e.g., Hartr=
Fock).

Besides performing further tests of our approach, e.g. ,

by comparing with exact results, other important issues
for future research are the development of criteria indi-
cating which trial wave function constitutes a good ap-
proximation for the structure of the nodal regions, and
the question whether a form of "nodal release" [10] can
be developed.
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