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Quantum Monte Carlo of Nitrogen: Atom, Dimer, Atomic, and Molecular Solids
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We have carried out variational and fixed-node diffusion Monte Carlo calculations for nitrogen in

atomic, molecular, and compressed solid forms. This is the first work which treats the electron correla-
tion in nitrogen solids with accuracy comparable to the most exact results on the atom and molecule.
Comparison with local density approximation (LDA) calculations reveals LDA total energy errors vary-
ing from 2. 1 eV in the atom to 0.7 eV/atom in the solid. We have also calculated the electronic energy
gap for the compressed solid and compared it with the LDA (30% lower) and Hartree-Fock (100%
higher) estimations.

PACS numbers: 71.20.Ad, 71.25.Cx, 71.45.5t

The nitrogen dimer is known as a very stable triple-
bond molecule with an extremely small interatomic dis-

tance. The strong molecular bond persists in condensed
forms of nitrogen which are molecular solids and liquids
at ordinary pressures. Nevertheless, a number of theoret-
ical calculations have predicted that nitrogen will trans-
form to a nonmolecular solid by application of pressure
well within the range of current experimental capabilities
[1-3]. Very recently, a new covalent structure has been

proposed [3] as a possible high-pressure solid phase of
atomic nitrogen. To date, however, experimental studies
[4] have not found the predicted transition.

So far electronic structure calculations of nitrogen
solids have relied on the commonly used local density ap-
proximation (LDA) [1-3,5]. However, because of the

competition between multiple molecular bonds and other
types of bonding, correlation eA'ects are expected to be
especially significant in these systems. One of the impor-
tant issues we address in this Letter is the accuracy of the
LDA in such cases, which we quantify by carrying out

nearly exact quantum Monte Carlo [6-9] calculations of
the correlation energies. Also, in order to shed light on

the excitation spectrum of the most likely candidate for
the atomic structure of nitrogen [3], we have performed
the calculation of an excited electronic state which we

compare with LDA and Hartree-Fock (HF) estimations.
To our knowledge, this is the first quantum Monte Carlo

gap estimation for solids.
The present work demonstrates wide applicability and

further development of the quantum Monte Carlo ap-
proach. We start with the valence-only Hamiltonian with

core states eliminated by ab initio nonlocal pseudopoten-
tials because the core electrons are diScult to treat with

Monte Carlo methods [6,7]. In the next step an opti-
mized correlated trial function is employed using varia-
tional Monte Carlo (VMC), and, finally, most of the
variational bias is removed by the stochastic solution of
the Schrodinger equation using the diff'usion Monte Carlo
(DMC) method. A detailed description of the VMC and
DMC methods can be found elsewhere [8,9] and we give

only the main points. The VMC energy is estimated by ~

Monte Carlo evaluation of the integral

f1~(R)I'[H~(R)h (R)]dR
JI~(R) I

'dR

where H is a Hamiltonian, +(R) is a trial function, and
the integration is over the configuration space of elec-
trons. The DMC method simulates stochastically the
imaginary time Schrodinger equation

f (R, t+r) ='„' G(R, R', r)f(R', t)dR', I'1)

where the importance sampling by +(R) is invoked so

that f(R, t) =+(R)4(R,t) while G(R, R', r) is the cor-

responding propagator known in an analytic form for
0 [8,9]. The lowest energy solution %(R,t) with fer-

mion nodes prescribed by +(R) (fixed-node approxima-
tion [8, 10]) is found by iterating (2) to large t

In general, the trial function is a linear combination of'

spin-up and -down Slater determinant products multi-

plied by a correlation factor [11]

O(R) =pe„D„'D„'exp g u(r;(, r,(,r„)
n li&j

where I denotes ions, i,j label electrons, and r, I r~l, r;~;lre
corresponding distances. The Slater determinants were

built from the HF orbitals using a localized basis set

(Gaussian or numerical). The HF equations were solved

by GAUSSIAN92 [12] and GAMESS [13] packages for atom
and molecule, and by CRYSTAL92 [14] I'or solids. In

atomic and molecular calculations the function u(r;t, r, t,
r~) is the same as in our previous studies [15] and in-

cludes 21 variational parameters which are optimized
within the VMC method [11]. For solids u(. . . ) is in-

dependent of r;I, r~q, or r;~ whenever r;I, r~l, or r;~ is larger
than half of the simulation cell edge, respectively, and the
number of variational parameters is 6. The development
of an eScient functional form of the correlation factor for
solids is still in progress and further computational details
will be published elsewhere [16].

The core electrons were eliminated from calculations
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TABLE I. The valence total and correlation energies (a.u. /
atom) for the nitrogen atom, dimer, molecular Pa 3, and atomic
/2~3 solid structures found by the Hartree-Fock (HF) and vari-

ational and diffusion Monte Carlo (VMC and DMC). TM and

PC refer to Troullier and Martins [21] and Pacios and Chris-
tiansen [22] pseudopotentials, respectively. All other calcula-
tions have been done with pseudopotentials of Stevens, Basch,
and Krauss [20].

Atom (TM)
Atom (PC)
Atom
Dimer
Pa 3
12i3

HF

—9.6741
—9.6501
—9.6441
—9.7401
—9.6443
—9.6531

VMC

—9.7841(6)
—9.7616(8)
—9.7558(8)
—9.922( I )
—9.830(2)
—9.834(l )

DMC

—9.7944(6)
—9.7715(9)
—9.7649 (5)
—9.944(l )
—9.887(3)
—9.889(3)

E DMC
COf

0.120(I )
0.121(1)
0.121(l )
0.205( I )
0.244(3)
0.236(3)

by ab initio nonlocal pseudopotentials. The difftculties

with the nonlocal operator in the DMC method were

overcome by the technique of evaluating pseudopotentials
with the trial function [17] which we applied and tested
on several systems earlier [15,18]. Additional checks
have shown that the impact of this approximation on the

energy was rather small because of a short radial range of
nitrogen pseudopotentials. Trial functions with various

degrees of correlation used for nonlocal pseudopotential
evaluation resulted in systematic energy shifts within

=O. l eV/atom. Similar behavior was observed in the

Fe atom simulations using short-ranged Ne-core pseudo-

potentials [19] while stronger impact was found for much

more extended Ar-core pseudopotentials [15].
The calculated total energies for the nitrogen atom, di-

mer, and solids are listed in Table I while the energy
differences are in Table II (statistical errors are in

parentheses). Most of the calculations have been done

with the HF ab initio norm-conserving pseudopotentials
of Stevens, Basch, and Krauss [20]. For a comparison,
Table I also includes atomic calculations with LDA
"soft" pseudopotentials of Troullier and Martins [21] and

with another HF pseudopotential by Pacios and Chris-
tiansen [22]. Moreover, we have carried out an indepen-

dent test of the N atom by a large configuration interac-
tion calculation which agrees with the DMC energy
within 0.05 eV.

Because of large correlation energy, the N2 molecule is

an excellent test case for a correlated method. The VMC
calculation of the N2 ground state 'Zg at equilibrium
bond length has obtained a remarkable 88(1)% of the
correlation energy, to our knowledge the best VMC result
for such a molecule [23]. The DMC then gives 98(1)%
of the experimental binding energy, which is comparable
with the accuracy of the most extensive quantum chemis-
try calculations [24]. The remaining difference with ex-

periment, we believe, is caused mainly by the fixed-node
error.

The calculations for the solid molecular (Pa3) and

TABLE II. The binding energies (eV/atom) of the nitrogen
dimer and two compressed solid systems. The LDA results are
from Ref. [3] which used Troullier-Martins pseudopotentials
(reference atomic energy of —9.7191 a.u. from LDA with spin

density correction). The experimental value is corrected for a

zero point energy [23].

HF LDA VMC DMC Expt.

Dimer
Pa 3
12i3

2.61
0.01
0.25

5.85
4.45
4.75

4.52(3)
2.0(1)
2. 1(l )

4.87(3)
3.3(1)
3.4(1)

4.96

2.5

2.0

1.5
O
O

1.0
O

UJ
0.5

0.0
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FIG. I. The difference in the total energy from LDA [3] and
DMC calculations for the nitrogen atom, dimer, and two types
of solids (Pa3 and 12~3).

atomic (12~3) cubic structures were carried out in period-

ic boundary conditions with eight atoms in the simulation

cell which corresponds to the Brillouin zone occupation

by one k point in the former and two k points in the latter
case. Both systems were compressed to the density 0.15
atom/A3 which was found by LDA [3] to give the energy
minimum of the I2~3 structure. The Monte Carlo ener-

gies of Pa3 and I2~3 structures were corrected for finite

size effects by additive corrections —0.36 and 0.08
eV/atom, respectively. Each of these corrections was

evaluated as the difference between the fully converged

LDA energy and LDA energy calculated with k-point oc-

cupation identical to that used in the Monte Carlo calcu-
lation. The corrected VMC and DMC energies are in

Table I. A Gaussian basis set 6s6p Id was used for the
solid state calculations. The d orbital is important and

lowers the energy by 0.69 and 0.25 eV/atom in HF and

DMC calculations, respectively.
The comparison of DMC total energies with recent

LDA calculations in Fig. 1 clearly illustrates the improve-

ment of LDA total energy with increasing "homogeneity"
(atom dimer molecular solid atomic solid) and

with increasing electronic density. The difference in the
two solids is due to different correlations in the molecular
and the nonmolecular forms. Eventually, by extrapola-
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tion to the homogeneous electron gas case, the LDA ener-

gy wi)l become identical to the DMC result since the
LDA exchange correlation was fit with the DMC calcula-
tions of this system [25].

The final point of our effort was to estimate the energy
of an excited electronic state in the solid and thus open a
road towards high accuracy ab initio estimations of band

gaps. Usually, the LDA eigenvalues interpreted as excit-
ed state bands give gaps 30%-50% smaller than experi-
ment; in some cases, like transition metal oxides, the er-
rors are even larger.

There are several complications related to the calcula-
tions of excited states. An excited state which is not the

ground state of a given symmetry is much more diScult
to calculate by the DMC method [26]. However, excited
states belonging to a different symmetry class than the

ground state can be treated directly because the solution

of Eq. (2) will converge to the lowest state of the given

symmetry. Since the translational symmetry of states in

the crystal is labeled by occupation numbers in k space,
we use the DMC method directly for an excitation of an

electron from the state kg to a different crystal momen-

tum k„e.g. , as in an indirect gap. The finite size of the

system is another complication. The excitation kg k,
creates an exciton (electron-hole pair) with a localization

length given by the size of the simulation cell. Conse-

quently, the excitation energy is smaller than the exciton
interaction energy. While for a small simulation cell the
exciton localization is artificially small, with increasing
cell size the exciton will stabilize at the equilibrium size
which minimizes the total energy. Thus our calculations
should be comparable to an exciton energy. LDA and

HF calculations do not include exciton effects, and hence

the comparison must include an estimate of the size of
such effects. Fortunately, exciton binding energies in

comparable covalent solids are much smaller than the ex-

citation energy which we find here.
The excited state trial function deserves some atten-

tion. If one electron is excited in a single determinant,
the wave function has a spin contamination. Although
the consequences are expected to be weak in the present
case of a large gap nonmagnetic insulator, it is possible to
avoid this problem by using a proper spin singlet which is

a superposition of the two determinant products in (3).
This was done in the present study.

The HF band structure of the atomic solid in the 12i3
structure (bcc with four atoms per primitive cell) is

sho~n in Fig. 2. The LDA valence bands are narrower
but otherwise very similar to the HF valence bands, while

the LDA conduction states lie much lower than their HF
counterparts [27]. The states occupied in our simulation

are denoted by the filled circles. %'e excited the electron
from the highest occupied I state to the lowest unoccu-

pied H state. The F' H gap is 6. 1 eV from LDA and

18.0 eV from Hartree-Fock calculation. The Monte Car-
lo calculations lead to the corresponding exciton energy
(the excitation-exciton interaction), which is found to be

16.0

6.0

-4.0

)
-i4.0:.

-24.0
I

-34.0

-44.0

N H

FIG. 2. The band structure of the atomic nitrogen solid in
the I2]3 structure from Hartree-Fock calculations. Three LDA
conduction bands (dashed lines) are inserted using the highest
HF occupied band as a reference level. The filled circles denote
states occupied in the simulation. The excited state was created
by promoting the electron from the highest occupied I state to
the lowest unoccupied 0 state (unfilled circle).

8.3(3) eV from the VMC method and 8. l (3) eV from the
more exact DMC method. For a Mott-Wannier exciton
the energy gain (in a.u. units) from the electron-hole in-
teraction can be expressed as F., I, —,

'
mr~~, where e is the

static dielectric constant and r~ is the localization
length. In our case we have an artificial confinement, so
that r~~ corresponds to the side of the simulation cell.
With a= 5 we estimate that the exciton interaction is
= 0.4 eV. Adding this value to the calculated DMC ex-
citon energy gives our estimate for the I H band gap
of 8.5(4) eV, where the increased error bar reIIects an ad-
ditional uncertainty from the exciton. The LDA underes-
timation and HF overestimation of the excitation energy
is in accord with error trends observed in similar cases
[27].

In conclusion, our calculations quantify the effects of
correlation upon total and binding energies in nitrogen
systems with very different electronic structures. Com-
parison with local density calculations shows that there
are varying errors in the total energy for atom, dimer,
and solids. In addition, we have found the energy of an
electronic excitation which greatly improves the results of
local density or Hartre-Fock approximations. The calcu-
lations also demonstrate a significant enhancement of the
quantum Monte Carlo method using pseudopotentials to-
gether with the high accuracy DMC algorithm which re-
moves the variational bias (clearly present in our varia-
tional calculations). We believe the approach used here
is a viable strategy for attacking even more demanding
cases like transition metal oxides, where accurate descrip-
tion of exchange and correlation is the key issue.
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