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A first order phase transition in a model of a superfluid is studied. The transition occurs when the
energy gap for rotons decreases below a critical value. The ground state is a purely real, positive,
and periodic wave function, which represents a new solid phase with long range phase order, as
in superfluids. Properties and characteristics of this supersolid are discussed. Although uniform
rotation occurs without dissipation, dissipationless flow around an obstacle is not possible. We
show the existence of “supersolid vortices” and propose some experiments to test the theory.

PACS numbers: 67.80.-s, 05.45.+b, 47.10.4+g, 47.20.Ky

Penrose and Onsager (PO) [1] were the first to consider
a Bose-Einstein condensation in solids and concluded
that such a “supersolid” was impossible. Since then, this
question has been revisited by various authors [2], both
experimentally and theoretically, and there has been no
compelling evidence of the existence of such a supersolid
state. In [3], we studied a model of a superfluid with a
roton minimum, the occurrence of this minimum arising
from a nonlocal cubic interaction in a Gross-Pitaevskil
equation. In this model, when the flow speed increases,
there is a supercritical bifurcation to a lamellar pattern
of density and phase modulations, as was first suggested
by Pitaevskii [4]. This pattern may be seen as a kind of
crystal, and the transition to this state is linked to an
increase of the “thermodynamic” parameter which is the
superfluid velocity. This suggests that a transition to a
crystalline order could appear in the same model with-
out velocity, by appropriately tuning another parameter,
such as the density. It happens that, by increasing the
density, the roton energy gap diminishes and there is a
critical value for which the system undergoes a subcriti-
cal bifurcation (first order phase transition) to a regular
pattern with a degenerate wave number. This pattern is
hexagonal in two dimensions (2D) and has a bcc struc-
ture in 3D. This is a crystal in the sense of Landau: a
many-body system where the lowest energy is a state of
modulated density ([5], part 1, Sec. 145). It is a slightly
different view of the usual crystal order, because there is
a priori no simple relation for the number of atoms per
unit cell. As shown by Chester [2] the proof by PO fails in
that case, because it assumes each lattice site occupied
by a particle. If the average number of atoms per cell
is less than what is predicted by simple crystallographic
enumeration, this system is a possible representation of
a “superfluid” of vacancies, a system studied by Andreev
and Lifshitz [2].

This “quantum crystal” is the ground state of the sys-
tem and is described by a purely positive and real con-
densate wave function (up to a global phase). However,
it is not exactly a crystal from the classical point of
view, since the points in space are all correlated by the
phase ¢ of the condensate wave function 1 as in a super-
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fluid where collective motion of the atoms involves such
a phase. This long range phase order is broken at finite
temperature only in 3D, as shown by the Landau-Peierls
argument ([5], part 1). A system of identical bosons at
finite density seems to have only two possible ground
states: a superfluid or a “supersolid,” each with a uniform
phase ¢. The first order phase transition is controlled in
the present model by a single parameter (later denoted as
g), a combination of the de Boer parameter and the den-
sity, which describes well this transition, as it combines
the zero-point motion and the number density.

For some time an accepted test for the supersolid
state [2] was the possibility of nondissipative matter flow
through a fixed crystal lattice. Such a flow is not possible
in the present model at 7' = 0 K where a flow around an
object leads to the creation of defects in the crystal which
carry away some energy and yield plastic irreversible de-
formations. However, a possible way of detecting the su-
persolid state, other than thermodynamic measurements
of the transition, would be to find evidence for the quan-
tum phase, which can be done in a rotating supersolid.
For low angular velocities the phase will not be constant
and, for increasing rotation speed, the system could cre-
ate vortices on the boundary of the container which move
to the center when the speed increases.

Our starting point is the Gross-Pitaevskil [6] equation:
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where 1) is the condensate wave function (a classical
field); U(r), the interparticle potential; m, the mass
of the particles; and 27h, Planck’s constant. Equa-
tion (1) has a uniform solution: woeiflg", where Ey =
|Y|?> [dr'U(r'). A plane wave linear perturbation

et R teilker—wit) gatisfies the dispersion relation [6]
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where U(k) = [drU(r)e’*™. Hereafter we take a soft
sphere interaction [i.e., U(r) = Uy > 0, 7 < a; U(r) =
0, 7 > a]. This not too realistic interaction makes nu-
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merical simulations possible, however, our results depend  elements. On the other hand, g — oo could mean that

mostly on the existence of a roton minimum. the zero-point motion vanishes or that quantum effects
Scaling arguments [k scales as 1/a, and U(k) ~ a®Ug]  are negligible (neglecting the possibility of very dense

suggest that the excitation spectrum of the liquid can be states).

written as fuvg = mi:-; fg(ka), where f, is a function [de- With a convenient value of g we obtain a Landau spec-

fined directly from (2)] and g is the dimensionless quan-  trum with rotons [3]. If we increase g, for instance, by

tity g = 47|—U0_.E,_na where n = |t)o|? is the number  keeping a, Up constant and increasing n, we observe that
den51ty of the uniform solution. The speed of sound is  the roton gap decreases. We expect that there is a criti-

¢s = =-/g/3. The spectrum wy may have four different cal value g, < g. < go for which t.he sysf:em crysfallizes.
shapes dependmg ong: (i) g =0, which represents a per-  The density increase might be achieved in a physmal sys-
fect gas, with a ballistic spectrum wy ~ k2 and no super- ~ tem by increasing the pressure and/or by cooling. Crys-

fluidity, as was first noticed by Landau; (ii) 0 < g < g, tallization due to the roton minimum can be expected
the spectrum grows monotonically in k, without a roton ~ Dear the real solid phase since solid helium exists only
minimum; (iii) g, < g < go, & Landau spectrum with for high pressures. The transition occurs when the roton
rotons; and (iv) g = go, such that wx = 0 for some ko, minimum is near the k axis for zero frequency, if we use
as at the edge of the phonon branch in solids. A reason-  Landau’s notation for rotons: fwy = A+ 5 om 2 (|k| - ky)? for
able value for ko is 2m/a (=~ 2.4 A~! for He1), roughly &k = k.. In our picture A, k,, and p are nontrivial func-
twice the wave number of the maximum of the Landau  tions of g. However, A decreases and the roton minimum
spectrum. (All the estimations concern helium, the en-  k;, increases as g increases. In our model, the functions
ergies will be in kelvin. It is useful to note that £ =12 A(9), k-(g), and pr(g) are known. In applications they
K A2, the quantum of circulation is % =158 m/sA, and should be deter?n'lned experimentally. There is a first or-
a = 2.57 A.) This suggests that the roton minimum in der phasie transgtlor.l for A = Al‘j! > 0. Thf’ wave number
Hel is like a ghost of the solid state. for the tflfurca.tlon is kr, wh'lch is the lattice numtfer.

At T = 0 K, there is no stable liquid structure for We will see now that this quantum crystal exists as

1 ] £ hich is likelv t ) . a ground state of (1). Writing (1) as a function of the
arge values of g, which is likely the case for all bosonic density, p = 1%, and the phase ¢ of ¥, we obtain a set

| of “perfect solidlike” equations:
h
&p=—V - (pV9), @)
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In the ground state the wave function 1 is real (except for the global phase Eyt/k) because a nonuniform phase
¢ increases the energy via a (V@)% term. This ground state can be determined by Eq. (4) with ¢ = (Ep/R)t, or by
minimizing the functional

Blpo) = [ degl—(Tp0)? + [ drae' Ue Do) - llpo(e) = . ®)

The solution py is identical to the solutlon for a classical solid, since the phase ¢ is uniform.
We sketch the solution in 2D. We find an approximate solution pp as a modulation of the uniform solution =, i.e.,
po(r) =n+n ( 2:;.=1 AjetkiT 4 c.c.), with the three complex amplitudes A; such that |4;| < 1, and the vectors k;

form an equilateral triangle (k; + k2 + ks = 0) with a magnitude |k;| = k. If we put po(r) in (5) and expand in
powers of A;, since |A;| < 1, we obtain

E h2k2
=" | 2 ZZIA,P - S (idpag + A543 + 5 ZIA 4 +23 0 14%14,% + ©)
z—-l i<j
with u = E;‘E";"f— The ground state is at the minimum of |
the energy, i.e., 6 A = 0. The hexagonal crystal solution  ble at the Maxwell point (MP): Ay = 773—2-%’:?-, ie.,
?s (A; = R;e7) such that each of the three amplitudes  when the crystal and liquid energy are equal. For He1r
is equal to (kr =1.95 A1) A, = 5.4 K and Ay = 6.0 K. The corre-
R; = (3++/9—64042)/40, j=1,2,3; ) sponding energy barrier (per particle) at the MP is about

E/N =~ 1.2x10~3 K. We note that this energy is reduced,

and the phases satisfy ¢1 + 2 + 3 = O(mod27). The by hybridization, by 3 orders of magnitude with respect

negative sign in (7) is always unstable. The metastable to all energy scales in the data. A./ps are bigger in 3D

solution [the positive sign in (7)] exists if 4? < 9/640  thap in 2D. The relevant 3D crystal structures are bec
equivalent to A < A, 73—# and it becomes sta-  or hep. In the bee configuration we have six amplitudes
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and the wave vectors form an octahedron [7]; each vector
participates in two equilateral triangles, which produces

the most stable configuration. The metastable bee lat-

2.2
tice exists if A < A, = 732—2%, and becomes stable for

A< Ay = 71—4%?—, which gives A, = 7.3 K, Ap = 8.11
K, and E/N ~ 3.2 x 103 K.

Let us study now the dynamics of a crystalline ground
state or supersolid. Following the principles of elasticity
theory, we define the deformation vector u(r, ), a slowly
varying function of r and t, and solve (3) and (4) by
a long wavelength expansion: p(r,t) = po(r — u(r,t)) +
p1(r—u(r,t)) +- - -. The solvability condition for p; gives

Osttti = AiktmOkiUm + -« -, (8)

where 8; = 5% and repeated indices are summed. The

tensor Ajkim for hexagonal symmetry in two dimensional
systems has only two independent components [8] (the
mode of uniform compression and the shear modulus)
and A can be written explicitly as integrals of functions of
po and of its gradients. The explicit calculations are long,
but finally we get that both the compression and shear
modulus lead to a speed of sound for elastic deformations
of order ¢, ~ i:f ~ 310 m/s. Equation (8) is the classical
wave equation in crystals. A second equation allows us
to compute the phase ¢ for a given u;. In contrast to
the displacement field this phase has both a slow and
a fast space dependence. It is deduced from the mass
conservation (3) and is such that, for 8;u; given, ¢ makes
stationary the functional (with A = 1)

£l6.A] = 5 [ drpole — w)((h/m)V + G, (9)

which is positive definite because po(r) > 0. In this
way the nonstationary deformation is connected with the
mass current j = p%de The energy (9) is a Galilean
invariant (A = 0, u; — u; + v;t, and 8;¢ — 0;¢ — Fu,
v; uniform). As this Galilean invariance is global, there
is no dissipationless superflow through the lattice in this
model at T = 0 K. Imposing numerically a large scale
phase gradient in the supersolid, where a fixed obsta-
cle is immersed, this puts the lattice in motion (as pre-
dicted by our argument) and the displacement of the lat-
tice around the obstacle produces defects and dissipation,
even at very low velocities, as shown in Fig. 1. On the
other hand, (9) allows us to compute V¢ for two different
cases: for a given acoustical field u and for an adiabatic
deformation imposed by the boundary conditions.

As noticed by Leggett (2] the phase in a rotating su-
persolid cannot be uniform. In our model, the phase of a
rotating supersolid is given for low angular velocities (£2)
by the minimization of £[¢, 2 x x]. As £ x x changes
slowly as a function of x, compared to the lattice period,
one can split V¢ into a slowly varying phase ¢ and a
periodic part, both depending linearly on © x x. Ho-
mogenization techniques yield a uniform peg, a rank 2
tensor in general, which becomes a scalar for a hexag-
onal lattice. This allows us to write the energy (to be
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FIG. 1. Numerical simulation of a plastic flow around a
disk. We plot the value of the density |4|>. The wave func-
tion ¢ vanishes on the black disk representing the obstacle.
The flow velocity (from left to right) is much lower than the
speed of sound. The arrows show the defects of the hexago-
nal pattern, which form a 5-7 pair. Insets show a numerical
simulation of a supersolid vortex. We plot (a) |¢/|? (the small
arrows pointing at the vortex core) and (b) ¢.

minimized) as $peg [ dx[(A/m)V¢+ € x x]2. This yields
an effective inertia tensor by noting that this energy is
quadratic in . ¢ is linear in Q2 and is determined by the
solution of Laplace’s equation, with the boundary condi-
tion [(h/m)Vé + Q2 x x]-fi = 0, where fi is normal to the
boundary.

As in Ref. [9] vortices appear spontaneously if the local
speed on the boundary of the container becomes super-
sonic, i.e., Q> N, = F= %}:—, where L is the size of the
container. “Supersolid vortices” are stationary solutions
of Eq. (1) with a +27 phase jump around the vortex
core, as can be seen in Fig. 1(b). Vortices are topolog-
ical defects and cannot be removed by any infinitesimal
perturbation of 9. The vortex dynamics is quite different
from the usual case of superfluids, since there is an in-
teraction with the periodic distribution pg; however, the
calculation can be done for the two dimensional case (rec-
tilinear vortices) in the usual way. The vortex velocity
is

Vyortex = —7—2— (Vo£2xVinp)+ Q2 x x, (10)

where Z is parallel to the linear vortices which we con-
sider also parallel to the angular velocity, and + refers
to the two possible choices of the quantum of circulation.
The right hand side of (10) is evaluated at the position of
the vortex. Note, however, that vortices are not, strictly
speaking, described by minimization of (9), since ¥ = 0
at the vortex core. Only the far field of a stationary
vortex is given by minimization of £[¢,0], with the ap-
propriate circulation condition. Insets of Fig. 1 show ¢
and [1|? near the core of such a vortex solution.
Another way to generate vortices is as follows. Imagine
a superfluid vortex in He11, and freeze the system. If this
solid He is not a supersolid, the vortex disappears. If it is
a supersolid, the vortex cannot disappear in the crystal-
lization process and one of two things may happen: (1)
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the vortex in the fluid is pushed by the solid liquid in-
terface and driven to the container boundary; or (2) the
crystal phase grows inside the vortex core first, then it
grows elsewhere to form a “supersolid vortex” [numerical
simulations of (1) seem to confirm the latter]. Next we
melt again the supersolid. The vortex cannot disappear
and thus we obtain a vortex in He Il which could be de-
tected with the usual methods in superfluids. If this vor-
tex has survived the freezing-melting process, we would
have proof of the existence of a supersolid. However, the
first possibility might happen and direct measurements
of a nonuniform phase could fail. A way to avoid this
problem could be by freezing a circulating superfluid in
a multiconnected domain. (This idea was suggested by
B. Castaing.)

We end this Letter with some remarks.

(i) The Landau-Peierls argument shows that the ther-
mal phase fluctuations are lower for higher densities n, in

the following way (see [5], part 2): (¢%) = [ z%)ykul(ﬁklz,
with |@x|> = Bfbr(vk + 1/2), where e = hek is the
energy of elastic deformations, v, = (e®® — 1)7! is
the Bose-Einstein distribution, a.nd2 B = 1/kgT. This
leads (for D = 3) to (¢?) = (Tlo) , T¢ = 12K3nc./m.
This suggests that the transition line (between supersolid
He and solid He) in the T-n phase diagram is given by
T(n) ~ v/n (we neglect the dependence of c. on n which
means that k. does not depend much on n). The long
wavelength thermal phase fluctuations diverge logarith-
mically for 2D, as is well known.

(i) We suggest that the He1I supersolid transition oc-
curs by increasing the density; therefore an estimate of
the critical density n. is possible, in principle, from the
knowledge of A(g ~ n), together with the critical gap
value A.. In the absence of experimental data for A(n)
we can fit, from [10], A as a function of the pressure (p).
This gives A = A(0)(1 — p/po), with A(0) =8.74 K and
po = 157 bars. The transition pressure for a bcc lattice
would then be p. = 26 bars.

(iii) The approach we present neglects quantum fluc-
tuations, and one might wonder how they change this
picture. One could imagine that dissipationless super-
flow is possible by quantum tunneling from one location
of this crystal to another one shifted by one wavelength
in the flow direction. This location indeed has the same
energy, and so no dissipation is needed. Consider a flow
around a macroscopic obstacle. Tunneling will be non-
negligible if the barrier height is independent of the size
of the obstacle. This depends on the space dimension.
The energy of the crystal interacting with the obstacle
needs to be a periodic function of the location xq of the
obstacle. Let Ej,; be this energy. A Gibbs-like develop-
ment shows that, for a macroscopic system, Ej,; expands
like

Einy ~ eLP + yLP~! + €} (xo),

where eLP is the volume (bulk) energy and yLP~! is the
surface energy (both are independent of xp). The last
term is the desired periodic function; as it is one order
less than the surface term it is of order LP?~2, where L
is the size of the obstacle. This implies that the energy
barrier is independent of L in 2D (and thus that tunneling
flow cannot be discarded). This barrier is of order L in
3D, where the tunneling flow can be neglected.

(iv) Let us comment on the finite temperature be-
havior of this model. Phonons are linear perturbations
Py (r)ei®T—wkt) to 4. As such they contribute to the
density by an amount |t;(r)|?. Similarly, a plane wave
carries some mass flow. This gives the idea that ther-
mal excitations in the supersolid state behave like the
normal fluid component of a superfluid. Thus “normal”
mass flow should accompany a heat flux (without tem-
perature gradient) as in a superfluid. Between two plates,
the normal mass flow should be balanced by a supersolid
displacement in the opposite direction. But, contrary to
the superfluid case, and due to the supersolid lattice, the
supersolid “flow” could be blocked by fixed obstacles, and
in this case, the heat flux should be accompanied by a
temperature difference between the plates. On the other
hand, a response of a supersolid to imposed mechanical
stress will be a deformation, as for an ordinary solid, not
a normal flow through the lattice.

We thank Neal B. Abraham for his help. Institute Non
Linéaire de Nice is UMR 129 CNRS.

* Also at Department of Mathematics, University of Ari-
zona, Tucson, AZ 85721.

[1] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

[2] A'F. Andreev and I.M. Lifshitz, Sov. Phys. JETP 29,
1107 (1969); G.V. Chester, Phys. Rev. A 2, 256 (1970);
A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970); see
M.W. Meisel, Physica (Amsterdam) 178B, 121 (1992),
for other references.

[3] Y. Pomeau and S. Rica, Phys. Rev. Lett. 71, 247 (1993).

[4] L.P. Pitaevskii, JETP Lett. 39, 511 (1984).

[5] L.D. Landau and E.M. Lifshitz, Statistical Physics (Perg-
amon Press, Oxford, 1980).

(6] N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947); L.P.
Pitaevskii, Sov. Phys. JETP 13, 451 (1961); E.P. Gross,
J. Math. Phys. 4, 195 (1963).

[7] A. de Wit, G. Dewel, P. Borckmans, and D. Walgraef,
Physica (Amsterdam) 61D, 289 (1992).

[8] L.D. Landau and E.M. Lifshitz, Theory of Elasticity
(Pergamon Press, New York, 1980).

[9] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69,
1644 (1992); Y. Pomeau and S. Rica, Superfluid Gyro-
scope (to be published).

[10] M. Sudraud and E.J. Varoquaux, Phys. Lett. 59A, 287
(1976).

2429



Numerical simulation of a plastic flow around a

FIG. 1.
disk. We plot the value of the dens

tion ¢ van

The wave func-

ity |9]*.
ishes on the black disk representing the obstacle.

is much lower than the

from left to right)

(

speed of sound. The arrows show the defects of the hexago-

ty

i

The flow veloc

wh

1

1
23
ms
[+
=2
S
=Y
.mﬂ
G
w
= 2
g9
2 a
= o
£7
=
il
0=
ok
E 3
c B
= B
S 3
9 2
a
S
=]
=
Qo
2
]
=
=
=
wm

nal pattern

and (b) ¢.

)

arrows pointing at the vortex core



