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Long-Ranged Orientational Order in Dipolar Fluids

S. Groh and S. Dietrich

(Received 22 November 1993}

Based on density-functional theory we study the occurrence of a ferroelectric phase in Stockmayer
fluids. Because of the long-ranged dipolar forces the corresponding bulk phase diagrams depend on both
the shape of the sample and the character of the dielectric surrounding. For ellipsoidal samples with

dilTerent aspect ratios at high temperatures we find a line of critical points, whereas at temperatures
below a tricritical point the phase transition is first order. The behavior near the continuous phase tran-
sitions is analyzed by a systematic Landau expansion,

PACS numbers: 64.70.—p, 61.25.I'm, 64.60.Kw, 77.80.—e

Ferromagnetism is a paradigm for spontaneous long-

ranged orientational order within a lattice structure.
Since for most materials the Curie temperature is less

than the melting temperature of the lattice, one could be

inclined to suppose that long-ranged positional order is a

prerequisite for long-ranged orientational order. Howev-

er, various counterexamples show that under certain cir-
cumstances even the liquid state of condensed matter can

sustain long-ranged orientational order. It has been

shown recently that ferromagnetism based on short-

ranged forces can persist in the liquid phase of two-

dimensional [1] and three-dimensional [2] fluids with

internal quantum states. The best known example of
purely orientationally ordered liquids is the nematic

phase of liquid crystals. In 1916 Born [3] conjectured
that in this case the orientational order is induced by di-

polar interactions. Since then, however, it became clear
that the short-ranged steric forces of su%ciently elongat-

ed hard particles [4] as well as long-ranged quadrupolar-

like interactions [5] can lead to the formation of the

nematic phase. Only recently molecular dynamics simu-

lations by Wei and Patey [6] and Weis er al. [7] provided

evidence that an orientationally ordered liquid can form

in dipolar hard or soft sphere fluids, for which the dipolar

interaction represents the only orientational dependent

force. This finding is supported by the occurrence ot

orientational instabilities in integral equation theories of
these fluids [8,9]. Both from a fundamental point of view

and for technical applications it is interesting that these

phases are not only nematic but also ferroelectric. A

physical system to which these models also probab1y ap-

ply is a ferrofluid, i.e., a suspension of small (50-100 A)
particles carrying permanent magnetic dipole moments

[10].
In this contribution we present an analytic theory for

the thermodynamic properties of Stockmayer fluids,

which consist of spherical particles interacting via a
Lennard-Jones potential wL„(r)=4e[(a/r) ' —(cr/r) ]

plus dipolar forces between the permanent dipole mo-

ments of the particles:

, g, p(r, co, o)') = —"', I3[m(cu)r][m(co')il

—m(ro) m(o)') I H(r —~r )

Here m is the dipole moment, m and r are unit vectors.
and O is the Heaviside function, This somewhat more

realistic model takes into account also the long-ranged
dispersion forces; in contrast to the dipolar hard or suA

sphere fluids [1 1] it exhibits the common liquid-gas phase
transition [12]. By using an appropriate density-func-
tional theory [13], whose thorough analysis overcon&e»

difhculties encountered in previous approaches [14]. wc

map out the fluid parts of the phase diagram finding

indeed a ferroelectric phase, It turns out that the hulk

phase diagram depends on both the shape of' the sample
and the dielectric constant of Its surrounding. An

elongated sample is considerably more f avorable f or t he

formation of the f'erroelectric phase than .] spheric;~1 l~

shaped sample which has been implicitly assumed in th»

molecular-dynamics simulations of Refs. [6„7]by using

the I..wald summation technique [15]. The ferroeiectrlc
and the isotropic phases are separated hy;» line of' criticaI
points which turns into a ftrst-order transition at;] tric[.It-

ical point. The critical exponents and the corresponding
amplitudes near the continuous phase transitions;~re
determined analytically within mean-held theory h~

means of a systematic Landau theory. These results pin-

point the importance of the correct performance of t he

thermodynamic limit as well as the relevance of boundar»

conditions f'or the bulk behavior of such fluids and the~

provide a guideline for future numerical simulations

which can hardly sweep the full parameter space of' these

systems.
A ferroelectric nematic fluid is described by the mean

number density p and the distribution a(co) ol' the molec-

ular orientation co=(0,&) with fdcua{m) =1. According
to Barker and Henderson [16l the interaction potenti;&1

L)+ ~~ g;p is divided into a short-ranged repulsive

reference part ~„r(r)=H(o. —r)w(r, cu, cu') and a long-

ranged attractive excess part ~,„(r,~, ~o') =6(r —a&
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x w(r, co, co ) which is treated as a perturbation [17l. Our analysis is based on the following grand-canonical variational

functional [13] for a sample with a single domain:

1—0[p, [a(co)j, T,p] =f,~(s(p, T)++
~ dcoa(co) In[4(ra(co)]+ —0;„,—pp,HS (2)

where V, T, and p denote the volume of the fluid, its temperature, and chemical potential. For the free energy density of
the hard sphere reference fluid, which is given by the first term in Eq. (2), we use the expression of Carnahan and Star-
ling [l8] and employ a temperature dependent hard sphere diameter [19] which takes into account the soft repulsive

part of the interaction potential. The second contribution to the grand-canonical potential stems from the additional en-

tropy due to the orientational degrees of freedom. It vanishes for an isotropic fluid for which a(co) = I/(4(r). The in-

teraction contribution,

2 t

0;„&= d r d r' dcodco'a(co)a(co')e "' (I —e " ' ' ),
2p~ v ~v (3)

follows from using the low-density approximation g = exp( —pw) for the pair distribution function [13]. The orien-

tational distribution depends only on the angle 8 and can be expressed in terms of Legendre polynomials:

2(ra(co) =a(cos8) = g a(P((cos8) .
I 0

(4)

We consider a finite volume which has the shape of a rotational ellipsoid with two short axes of length R and one long
axis of length kR. The polarization points along the long axis [20]. By performing the limit R ~ for fixed k and
carefully taking into account the long-ranged nature of the dipolar interaction, after a lengthy calculation we find that
the grand-canonical potential is indeed an extensive quantity proportional to the volume of the sample in the thermo-
dynamic limit and takes on the following shape dependent form:

lim —n;„,-p'g u(af,
1

y ~ V I 0

where the coe%cients ui are given by

I 4Jz( —I)' ",I,-. . . Snu(= ——
3(z „dr(2r(2„dcodco'f(r(2,(o, co', co(2)@((Q(co,co co(2) — 1(k)m b( (.

21+1 "' "~ 9

(s)

(6)

Here f=exp( —pco,„)—I is the Mayer function and the
functions 4(,(,( form a complete set of functions that are
invariant under simultaneous rotation of the three solid

angles co, co', and co(2 [13,2ll. The function 1(k) describ-
ing the shape dependence of the grand-canonical poten-

tial, which enters only via the coefficient u~, is given by

The interaction contribution to the grand-canonical
functional can be rewritten as

lim —n;„,= dx dx'a(x)a(x')K(x, x')
v- V 2+ —

~ 4 —t

(k) k +2
3(k' —I)

ln(k+4k —I ) .(k'- I)"' (7)
with the kernel

A macroscopic calculation of the electrostatic energy
of a homogeneously polarized ellipsoid gives W,~/V

=2rcD(k)P2 with the depolarization factor D(k) = —,
'

—1(k) [221 which yields the same shape dependence of
the free energy density as our microscopic theory. If the
polarized fluid is surrounded by a dielectric container
characterized by the dielectric constant e, the induced po-
larization in this surrounding medium generates an addi-
tional reaction field which leads to a corresponding con-
tribution to the free energy density. With the definition

/(k) —D(k) =1(/c 8(k, E))
e —D(k)(e —I )

for any k a system with e&1 can be mapped onto a sys-
tem with e=1 and the aspect ratio k,(r(k, e) ~ k which
has the same free energy density. For this reason in the
following we confine ourselves to the case e =1.

K(x,x') = g u(P((x)P((x') .
" (2/+I)'

I 0
(10)

M inimization of the grand-canonical functional with

respect to the angular distribution a(x) leads to the in-

tegral equation

exp[ —pPf -'(dx'a(x') K(x,x')]
a x f—'(dx exp[ —pPf -'(dx'a(x')K(x, x')]

In order to compute the coefficients ui we expand the
Mayer function in Eq. (6) for small dipole moments m

which allows us to perform the angular integrations
analytically. We find u(~ 2-m '+O(m '+ ). By a
lengthy algebraic manipulation using the orthogonality
relation and sum rules for the functions NI, I,I we have
determined the expansion coefficients up to O(m ). Our
numerical investigations show that this gives a satisfacto-
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FIG. i. A typical orieotational distribution a(cos8) in the
ferroelectric phase exhibiting a pronounced maximum at
cos8 l, i.e., in the direction of the long axis of the ellipsoidal
sample.

ry accuracy for m* =(m /&.'o ) ' ~ 2. Since we do not
take into account the higher order terms, we can truncate
the summation in Eq. (10) at i=4.

Because of the structure of K(x,x') the solution of Eq.
( I I) has the form

4

a(x) =Cexp —
pP g (2l+ I )ulaIPI(x) (i 2)

a& —(T, —T)', Pf —
P&

—T&
—T, Te T,

along two phase coexistence for T & T, and

(13)

(p p) '-, p(—T .p) S- (p —
p
—) ~ p & p

(14)

for fixed T T, where pI and p, are the tricritical density
and chemical potential. In three spatial dimensions these
critical exponents are valid beyond mean-field theory
[23]. On the other hand, upon approaching the phase
boundary pf, (T) at a temperature To & T, one finds

A system of nonlinear equations for the variables C and
a~, . . . , a4 can be obtained from Eq. (I I). Typical nu-
merical solutions show that a(x) exhibits a pronounced
maximum at x=1, i.e., for orientations along the long
axis of the ellipsoidal sample (see Fig. I).

The phase diagram is determined by minimizing the
grand-canonical potential with respect to the density p
and a(x). The Auid is described in terms of the reduced
quantities m*, T* =k&T/e, and p* =po . Figure 2
displays the phase diagram for m * =2 and k =3. At
temperatures below the triple temperature T3 an isotropic
gas coexists with a ferroelectric liquid. Between Ti and
the critical temperature T, coexistence of an isotropic gas
and liquid or an isotropic and ferroelectric liquid is possi-
ble. At the tricritical point T, the first-order transition
between the isotropic and the ferroelectric Iluid turns into
a second-order transition. Near the tricritical point the
density difference and the ferroelectric order parameter
ai exhibit the mean-field critical exponents

2.2

and

ai-(To —T)'", T&To, p«ed,

p pf„(To)——T —To, T To*, p fixed,

a& [p pf (To)], p 4 pf (To), T fixed,

(i 5)

p pf& (To) p pf& (To). p =
pf& (To)

If the critical Iluctuations are taken into account, the ex-
ponent for a& in Eqs. (15) and (16) is expected to be re-
placed by P=0.35. The mean-field exponents were de-
rived from a systematic Landau expansion of the grand-
canonical potential for small al, i.e., for small deviations
from isotropy; this expansion also yields a& =81(p/pf, .—I)'~ for the higher order expansion coefficients of the
orientational distribution with the amplitudes 3 ( =

4

&&(3u) —5u2)/(u( —5u2) and A2= —,
' u)/(u) —5u2).

At larger aspect ratios the liquid-gas critical point van-
ishes, so that at all temperatures only two Quid phases ex-
ist (see Fig. 3; a similar topology of the phase diagram
has been found in Refs. [1,2] which correspond to models
with short-ranged interactions exhibiting no shape depen-
dence). For small aspect ratios the formation of the fer-
roelectric phase aAects the phase diagram only at high
densities where a weakly first-order transition extends up
to the highest densities considered. But in this case the
formation of the ferroelectric fluid is probably preempted
by freezing which is not captured by the present density-
functional theory. Since the freezing transition is dom-
inated by the short-ranged repulsive forces, it is expected
to occur also for the Stockmayer quid in the same density
range as for hard spheres, i.e., at p~ =0.95 and p, =1.05
[241. (The close-packed structure corresponds to p,

*

~02 * 04 * 0.6p* p*0P3' P, '
Pis

P*

F16. 2. Phase diagram for the dipole moment m* =2 and
the aspect ratio k 3. T3, T„and T, denote the triple, critical,
and tricritical temperatures. Above the tricritical point there is
a line of' critical points pf, (T) given by the dashed curve. The
dotted lines denote the two phase region of the isotropic gas and
liquid if the ferroelectric phase is not taken into account.
within the shaded region there are no thermodynamically
stable states.
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To summarize, our microscopic theory predicts the ex-
istence of a ferroelectric nematic phase in Stockmayer
fluids. In this phase the free energy depends on the shape
of the sample [Eq. (5)] as well as on the surrounding
medium [Eq. (8)]. We have scanned the full phase dia-
grams for ellipsoidal samples of different aspect ratios
which exhibit phase transitions of various characters.
Qbviously several further investigations lie ahead such as
the study of domain formation and the use of more so-
phisticated density-functional theories, which are capable
of describing the transition between the ferroelectric fluid
and the solid phase.
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