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Stopping Power Theory for Screened Coulomb Binary Collisions in a Nondegenerate Plasma
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The stopping power of a nondegenerate, quasineutral plasma is evaluated both numerically and
analytically for energetic charged particles which undergo screened Coulomb collisions as a result of De-
bye shielding. The numerical evaluation is exact within the framework of the binary collision approxi-
mation and accurately takes into account both the plasma particle velocity distribution and the profile of
the screened Coulomb intertaction potential. The stopping po~er of plasma electrons is found to be con-
siderably smaller than reported by Li and Petrasso [Phys. Rev. Lett. 70, 3059 (1993)].

PACS numbers: 52.40.Mj, 52.50.Gj, 52.55.Pi

The stopping power is a useful parameter used in a

variety of disciplines providing the average energy loss

rate for fast-moving ions or electrons (hereafter referred
to as "test particles" ) in matter. A significant amount of
work has been carried out in the development of stopping
power theories for solids and gases (a historical review is

found in Ref. [1]). For nondegenerate, quasineutral plas-
mas, stopping power theories have also been developed
which consider a collective plasma response to the test
particle [2) or which consider binary collisions [3]. The
utility of a stopping power theory for nondegenerate plas-
mas is diverse. Applications include studies involving

inertial confinement fusion [2,3), magnetic confinement
fusion associated with two-component plasma concepts
[4,5], neutron generation [6], and stellar plasmas [7).

In the work presented here, the stopping power of a
nondegenerate, quasineutral plasma is evaluated within

the framework of the binary collision approximation.
The binary collision approximation is suitable for this pri-
marily when the test particle speed is smaller than the
electron thermal speed. In this case, the interaction po-
tential between the test particle and a plasma particle is a
screened Coulomb potential which results from Debye
shielding. Within the binary collision approach, the stop-

ping power of each species of particles in the plasma is

computed separately. For example, for a fully ionized

hydrogen plasma, the stopping power of the plasma ions
and the stopping power of the plasma electrons are evalu-

ated separately and the total stopping power of the plas-
ma is the sum of the two.

In the binary collision approach, energy lost by the test
particle as it travels through the plasma is approximated
as a cumulative sum of energy lost (or gained) in succes-
sive, independent binary collisions. For a test particle
which undergoes N binary collisions while traveling a dis-
tance Bl, the energy lost by the test particle is 8'E

P;-iLLE;, where AE; is the energy lost in the ith col-
lision. The stopping power, dE/dl, is defined such that

fg (dE/dl)dl bE. With the approximation that only a
small change in energy occurs during N collisions where
N is a large number, fg'(dE/dl)dl (dE/dl)bl and

dE bE
dl bl

With this, the stopping power is

dE N 1
AEi no'~gg(BE)

dl bl N t-i

d s
v 2f(vz) „do't5,E, (2)

where JV/b'I is the average number of binary collisions per
unit distance traveled due to the forward motion of the
test particle, (d,E) is the average energy lost by the test
particle per collision, and f(v2) is the velocity distribution
function of the plasma particles (subscript 2) which is

normalized to the plasma density (n). This relation as-
sumes that binary collisions have impact parameters less

than b~,„Qcr~,„/tr. The limit b .,„~can be taken
when a screened Coulomb interaction potential is used

but not when the long range pure Coulomb interaction
potential is used. The latter would cause the Coulomb
logarithm to diverge. The fundamental difference be-
tween the approach in the present work and that used

previously [8] is the definition used for the stopping
power. Referring back to Eq. (1), the stopping power
might also be defined (approximately) as

dE hE ud't 2f(v2) do i3E,
dl b.l ,, , 4 (3)

where hE is the energy lost by the test particle per col-
lision, hl is the distance traveled per collision due to the
relative motion of the test particle, and u -(u( -ivi —v2)
is the relative speed between the test particle and a plas-
ma particle during a binary collision. Equation (3) is
used by Trubnikov (see Eq. 7.29 of Ref. [8)) and also
provides the basis for the kinetic theory of stopping
developed by Sigmund [see Eqs. (5) and (13) of Ref.
[9]). The stopping powers predicted by Eqs. (2) and (3)
have been compared to experimental stopping power
values for stopping by electrons in copper (which is
predominant1y due to stopping by the degenerate e1ectron
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plasma in copper) and for stopping by atomic electrons in
hydrogen [l01. In both cases, Eq. (2) provides better
agreement with the experimental data particularly when
the mean electron speed is comparable to the test particle
speed. In the present work, Eq. (2) is used for the first
time to predict the stopping power of a nondegenerate
pl aslYl a.

The energy lost as a result of a single binary collision
with a plasma particle is

1

rn, 2 2 0,&F = 2m„v)(v)—
v2))) — u sin

2

—m, i |c 2~sin8, ,

where subscript 1 denotes the test particle, m„=m)m2/
(m)+m2) is the reduced mass, and 8, is the center-of-
mass scattering angle in the plane of the collision with
values between x and —z. Here, the velocity of the plas-
ma particle is separated into perpendicular (i) and
parallel (Il) components with respect to the direction of
travel of the test particle prior to the collision. To arrive
at Eq. (4), the velocity vectors for the test particle and
the plasma particle which it collides with are initially
considered in the laboratory frame of reference. A labo-

ratory coordinate system with the z axis parallel to the in-

itial direction of travel of the test particle is chosen. The
two velocity vectors are then transformed to a coordinate
system which is aligned with the laboratory coordinate
system but which is moving such that the plasma particle
is at rest. A rotation of this coordinate system is then
necessary in order to realign the velocity vector of the test
particle with the z axis. Following this, a transformation
(without rotation) is made to a center-of-mass coordinate
system. The asymptotic velocity vectors after the col-
lision are then found in terms of the center-of-mass
scattering angle of the test particle by requiring conserva-
tion of momentum and energy. The transforrnations are
reversed and the velocity vectors for the two particles
after the collision are evaluated with respect to the labo-
ratory coordinate system. With the initial and final speed
for either particle, the energy transfer as a result of the
collision is found. For convenience, the value of the ener-

gy transferred, denoted h, F., is chosen to be positive when

energy is lost by the test particle and negative when ener-

gy is gained. Consequently, calculated stopping power
values presented here are positive (although formally
they should be negative). There is equal probability for
positive and negative values for 8, and Jsin8„der 0.
Consequently, the stopping power is

dE oo ~oo woo g
4m~am, sin PdP v)(v) v2)))

dl " 4P "P 2

mp
u f(v2i v2)))dv2~dv2)). (5)

Here, the diITerential cross section for the collision has
been written as drr=2rrbdb and then a change of vari-
ables has been made given by b XDp, where XD is the
Debye screening length.

It should be kept in mind that the applicability of Eq.
(5) is restricted to situations where the binary collision
approximation is valid A. long with the restriction that
the test particle speed be smaller than the electron
thermal speed, the Coulomb logarithm (k) should have a
sufficiently large average value. For an average value
near or below unity, correlated many-body interactions
become increasingly important and the binary collision
approximation may no longer be valid. The Coulomb
logarithm is present in Eq. (5) as

r

goo g
A. =A sin PdP,40 2

(I +Af) In(1 +Af) Af
A. A +0.15Afe

(2+Af) 2 2(2+Af)

e, =n —2b
dr V(r)

4fp 2 E,
where

- —1/2
b

r 2
(7)

V(rp)1— =0 (8)
Ee ro2

Here, rp(b) is the distance of closest approach and V(r)
is the interaction potential energy. The interaction poten-
tial due to Debye shielding is the screened Coulomb po-
tential, V(r) =(«/r)exp( —r/X ),Dwhere AD is the Debye
screening length [81. For efficient computation of the
stopping power, a fit to a numerical evaluation of Eq. (6)
is used which is accurate to within 4% for k) O. l. The
fit is given by

I where A=kDm, u /Ir and «=(q)q2( in cgs units. The
center-of-mass scattering angle for a binary collision is

given by [11]

ml

where Af =1.17A. In comparison, the conventional formula for the Coulomb logarithm (lnA) is accurate to within 4%
only for k values greater than —10. In terms of the Coulomb logarithm, Eq. (5) is now written as

dE 4x«X(u) mr
v ) (v) v211) u f() 2J. & 2)l)d& 2J. d& 211 . (10)dl m, 4 "o g4

This equation provides the stopping po~er of each component of a nondegenerate, quasineutral plamsa and is exact
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FIG. 1. The stopping of alpha particles by the ion component
(curves I and 2) and the electron component (curves 3 and 4)
of a 10 cm, 20 keV thermalized D-T plasma as predicted
by Eq. (IO) (solid circles), Eq. (I I) (solid curves), and previous
theory [3) (dashed curves).

FIG. 2. The fusion energy multiplication factor for energy-
clamped 100 keV deuterons within a 5x10' cm thermalized
tritium plasma. The evaluations shown use the stopping power
as predicted by Eq. (I I) (solid curve) and as predicted by previ-
ous stopping power theory [3] (dashed curve).

' I/2
2xnx' Am2 1 mr

+g — e «erfi(v~g) —
1

m T2 2 m| g

where g =m2vi2/2T2 and erfi(x) = ierf(i—x) is the imag-
inary error function.

An example calculation of the binary-collision-based
stopping power is shown in Fig. 1 using parameters rel-
evant to inertial confinement fusion. Both Eq. (11) and
an exact numerical evaluation of Eq. (10) are shown.
These are found to agree well. Also shown are stopping
power calculations using the theory developed by Li and
Petrasso [Eqs. (1) and (2) in Ref. [3]]which is based on
Trubnikov's [8] work. It is apparent that the rate at
which fast ions lose energy to plasma ions as predicted by
Eq. (11) agrees well with the theory of Li and Petrasso.
Ho~ever, the stopping po~er of plasma electrons is
significantly smaller. This is an important result because
it signifies that the alpha particles will transfer a greater
fraction of their energy to the plasma ions as they slow
down within the plasma and that the alpha particles will

have a larger range within the plasma. The smaller stop-
ping power is also important for studies associated with
two-component, magnetically confined fusion plasmas.
Consider a magnetically confined tritium plasma into
which 100 keV deuterium is deposited by neutral-beam
injection. The transfer of energy from the deuterium to
the plasma can be compensated for by magnetic compres-
sion. As a result, the energy of the deuterium can be
"clamped" near 100 keV ~here the peak of the D-T
fusion cross section occurs. For this scenario, the fusion
energy multiplication factor, G~,„,is evaluated as the ra-
tio of the fusion energy production rate to the energy
transfer rate between the energetic deuterium ions and
the plasma. (A more detailed discussion of G,„along
with its relation to Q is found in Ref. [5].) Figure 2
shows a calculation of G,„using Eq. (11). For energy

dE
dl

t
clamping at 100 keV, G~,.„1at a plasma temperature
and density of 950 eV and 5x10' cm, respectively.
The temperature at which Gm,„=lis significantly lower
than previously reported [5].

In summary, a new stopping power theory for a nonde-
generate, quasineutral plasma has been presented. The
theory is exact within the framework of the binary col-
lision approximation when evaluated numerically. An
analytic relation which compares well with the exact re-
sult has also been given which is suitable when the
Coulomb logarithm is slowly varying (lj.)2). An impor-
tant prediction of the new theory is that the stopping
po~er of plasma electrons is considerably smaller than
previously thought. This suggests that a greater fraction
of energy deposited into a plasma by an energetic charged
particle is transferred to the plasma ions. The applicabil-
ity of the new theoretical result has been briefiy explored
considering parameters relevant to both inertial confine-
ment fusion and magnetic confinement fusion. For an
inertially confined fusion plasma, a smaller stopping
power of the plasma electrons implies a larger fraction of
alpha particle energy will be deposited into the ion com-
ponent of the D-T plasma as the alphas slow down. For a
two-component, magnetically confined fusion plasma, a
smaller stopping po~er results in a value for G,„which
exceeds unity at a plasma temperature less than 1 keV.
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