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Flowerlike Patterns Generated by a Laser Beam Transmitted through a Rubidium
Cell with Single Feedback Mirror
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A spatial instability is observed when a laser beam at 795 nm is transmitted through a rubidium cell
with single plane feedback mirror. The emitted beams have patterns looking like flowers. The depen-
dence of the number of petals in the pattern with the distance between the cell and the mirror is studied
and interpreted using an expansion of the instability in Laguerre-Gauss modes. This experiment shows
the influence of the saturation of the nonlinearity in the pattern selection.

PACS numbers: 42.65.Hw, 47.20.Ky

There is presently a large interest in the study of pat-
tern formation. The initial studies were done in hydro-
dynamics [1], but similar phenomena were also encoun-
tered in many other areas including nonlinear optics [2].
Even though the first studies made with passive nonlinear
optical systems mainly rediscovered effects that were al-
ready known in fluid mechanics such as the formation of
hexagonal patterns [3-5], it is clear that light has proper-
ties that are markedly different from those of the fields of
hydrodynamics and that these properties should lead to
original developments. For instance, the fact that light is
a quantum field leads to quantum complementarity be-
tween the near and far fields patterns [6]. Another
characteristic of light is its polarization which is pre-
served or not at the onset of instability [7,8]. In non-
linear optics, the three most popular systems are as fol-
lows: A Fabry-Perot cavity containing a nonlinear medi-
um [9], a nonlinear medium interacting with counterpro-
pagating beams [3], and a thin nonlinear medium with
single feedback mirror [4,5,10-12]. The typical patterns
predicted and observed in all these systems are hexagons,
rings, and stripes. The system consisting of a thin slab of
nonlinear medium and a feedback mirror is particularly
interesting because it appears to be relatively easy to han-
dle both from a theortical and an experimental point of
view. In particular, the possibility to vary the distance
between the cell and the nonlinear medium [5] is an easy
and reliable way to check the validity of a model. We
present the results of an experiment where the nonlinear
medium consists of rubidium atoms. A striking result of
our experiment is the observation of new patterns com-
pletely different from those considered before for passive
nonlinear media. These patterns look like flowers with a
number of petals which varies with the distance between
the feedback mirror and the rubidium cell. We show that
this experiment strongly differs from those performed
with Kerr media because the nonlinearity is very different
from a quadratic nonlinearity and the pattern selection is
associated with the strong saturation of this nonlinearity.
This experiment shows how pattern formation is modified
in situations where there is no perturbative expansion of
the nonlinearity.

Consider a nonlinear medium interacting with two
counterpropagating pump beams Efe'(’fHZ) and
Ese'® ) For a weak incident field E'e/* ™%, the
preceding system acts as a mirror: the reflected field
Ee'®*k2) is the sum of two components, one proportional
to E'e™ and one proportional to E'e ~* (phase-conjugate
term). As a result of the interference between these two
components, phase variations in the incident field are
transformed into amplitude variations in the reflected
field as shown experimentally in [13] (hence the name
“phase-contrast mirror” given to this system). Because a
phase-contrast mirror can give reflection coefficients
much larger than 100% [14], a cavity consisting of a
feedback mirror and a phase-contrast mirror can spon-
taneously oscillate. This is precisely how the instability
for a slab of nonlinear material with a feedback morror,
first described by Firth [11], was interpreted in a different
way in [12]. For the optical pumping nonlinearity con-
sidered in [13,14], E and E' have a linear polarization or-
thogonal to that of E, and Ej and, at first order in E'E
is given by
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where ae’ is a coefficient which characterizes the non-
linear medium: a is proportional to the product of the
atomic density by the length of the nonlinear medium and
n characterizes the nonlinearity (0 < n < x). In the case
of a dispersive nonlinearity, 7 is equal to O when the laser
is tuned below resonance and equal to & above resonance.
The saturation term b(|Es|2+|E,|?) is the ratio of the
optical pumping rate divided by the relaxation rate of the
ground state associated with other processes. The medi-
um can be considered as a Kerr medium when b|Ef|2
<.

The distance between the thin nonlinear medium and
the mirror (which has an intensity reflection coefficient
equal to R) is equal to d (Fig. 1). We suppose that the
forward pump can be described as a Gaussian beam
(Ep=JIse —riw? r=—kr?/2R;) and we assume that
d/kw?< 1. In the case where the mirror is flat (which is
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FIG. 1. Scheme of the experiment. A linearly polarized in-
cident beam is transmitted through a cell containing rubidium
atoms which is set at a distance d from a feedback mirror. An
instability cross polarized with the incident beam can appear
between the rubidium cell and the mirror. The instability can
be separated from the incident beam using a Glan prism. The
pattern of the instability is observed on a screen.

the situation of the experiment), this implies that the di-
ameter of the reflected field in the nonlinear medium is
nearly equal to the diameter of the incident field. The
phase of the reflected field is ¢p = — (kr%/2R};) +¢go with
w00 =2(kd —2d/kw?), the last term being the contribu-
tion of the Gouy phase. We now study in which condi-
tions a Laguerre-Gauss mode having the same waist w
and the same curvature R, as the forward pump at the
exit of the nonlinear medium can oscillate between the
nonlinear material and the feedback mirror. We thus
consider
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where L[" is a generalized Laguerre polynomial. A solu-
tion varying as ™ or e ™% is not consistent with the
phase properties of the phase-contrast mirror which
would mix these two modes. By contrast, a standing
wave of the form coslm(6—6y)] is compatible with the
boundary conditions on the nonlinear mirror. Consider
now the field Ej, obtained from E;, after propagation
between the nonlinear medium and the mirror and
reflection on the mirror. The amplitude of Ej, exhibits
the same variations as £y, versus r and 6, and its magni-
tude is just multiplied by VR. lts phase ¢’ is equal to
(—kr?/2Rp) + ¢+ @1 where @ =2lkd —(2/+m+1)
x2d/kw?]. Note that the wave fronts of E and E' match
the wave fronts of the pump beams E; and E,, respec-
tively. The oscillation threshold for the mode E, alone
is obtained by replacing E and E' of Eq. (1) by the de-
tailed expressions of Ej, [formula (2)] and E/,. One
thus obtains ¢ =n and
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where ¢, (I) is an overlap integral describing the projec-
tion of the reflected field on the incident mode /,m:

2380

!

/
Trrr+R)

Clm (lf) =

e " 24yum L (w)|?

><f+°° (4)
o YT 0+R)e "

In particular, when the saturation by the pump beams is
very efficient [6I,(1+R)> 11, ¢;jm(ly) is a decreasing
function of / and m which is close to I for the lowest
values of / and m because the radial extension of these
modes is relatively small and they are thus localized at
points of large pump intensity. Considering modes for
which ¢m(If) =1, we can compare the dependence
versus d of the threshold condition with the dependence
found by Firth [11] for the case of an extended system.
We see that the emission angle of the instability is
replaced in the threshold condition by 2v2/+m/kw.
Whereas a continuous variation of the pattern versus d
was predicted (and observed [5]) in the case of an ex-
tended system, a discrete variation with sudden jumps
from one pattern to another is expected here. Such a
discrete variation originates from the finite dimension of
the incident beam. Note also that the theoretical predic-
tions of [15] performed for an incident beam of finite size
cannot be applied here because the models for the non-
linearity are completely different. In fact, even in the
frame of our model, the predictions are quite different for
a Kerr medium (b1, =0) and for a highly saturated medi-
um (b/,>1). In the first case, the pattern selection is
mostly determined by the overlap integral which permits
the oscillation of a very few number of modes having
small / and m values. In the second case, the saturation
diminishes the effect of the overlap and the sine function
of Eq. (3) has then a more dramatic importance in the
pattern selection allowing modes of high / and m values
to be observed. Finally, it is interesting to note that the
Laguerre-Gauss patterns do not arise from the boun-
daries conditions imposed by the feedback mirror as in a
usual cavity but that they are associated with the field
distribution in the incident beam. If this field is not
Gaussian, another basis may be more suited to describe
the instability [16].

Our experimental setup consists of a / =3 cm rubidium
cell at a temperature of about 100°C which is placed in
front of a flat multidielectric mirror with a reflection
coefficient R =96%. The distance d between the exit of
the cell and the mirror can be continuously varied be-
tween 7 cm and 35 cm. The light source consists of a
home-made single mode Ti-Sa laser pumped by an Art
ion laser. For the experiments described in this paper its
output was 200 mW. The beam is transmitted through a
spatial filter and adjusted so that its focus is inside the ru-
bidium cell. The beam diameter at the entrance of the
cell is 0.8 mm which corresponds to a Rayleigh length
kw?/2 equal to 1.8 m. The laser beam was tuned on the
high-frequency side of the 5S82(F=3)-5P,(F' =2)
transition of 85 Rb at about 150 MHz from the center of



VOLUME 72, NUMBER 15

PHYSICAL REVIEW LETTERS

11 APRIL 1994

(a

(©

FIG. 2. Far-field patterns observed for d=11 (a), 17 (b),
and 24 cm (c). The central part of the pattern corresponds to
the pump beam which is slightly depolarized by the windows of
the cell. These patterns look like flowers and can be described
by Laguerre-Gauss modes with / =0 and m =10 (a), m =8 (b),
and m =6 (c). The relative phase between consecutive petals is
studied using an interference with an auxiliary beam. As shown
in (d), a black fringe in one petal is followed by a white fringe
in the next petal. This x phase shift, shown here for the case of
a 12 petals pattern, is also observed for the other patterns.

this transition. It is clear that this power density allows a
complete saturation of the electronic transition near the
beam center and gives also very large optical pumping
rates in the wings of the distribution of intensity [the con-
dition bl exp(—2r?/w?)> 1 is thus certainly satisfied in
a large range of values of r]1. A Glan prism is placed
behind the reflection mirror to split the two polarizations
components. The patterns for the two polarizations are
observed on a screen located at a distance equal to 4 m
from the cell. As expected from the mechanism of non-
linearity, the spatial instability is associated with a polar-
ization instability [7] and the transverse pattern is mostly
cross-polarized with the incident laser beam. Pictures of
the far-field patterns observed for three different values of
d are shown in Figs. 2(a)-2(c). These patterns look like
flowers and are similar to Gauss-Laguerre modes with
/=0 (the central part of the pattern mostly corresponds
to the pump beam which is slightly depolarized by the
windows of the cell [17]1). We have compared the pic-
tures of the near-field and far-field patterns and observed
that they correspond to similar intensity distribution. To
check the cos(m8) law of Eq. (2), we have studied the
relative phase of the field for two neighbor petals using an
interference with a reference beam. A shift of the in-
terference fringes between consecutive petals is observed,
a dark fringe in one petal corresponding to a white fringe
in the next petal [Fig. 2(d)]. This shows the occurrence
of a « phase shift as expected for the cos(m8) law. The
observation of these stable fringes also shows that the in-
stability has the same frequency as the laser. The num-
ber of petals in the pattern and its size evolve by jumps
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FIG. 3. Number of petals N vs 1/d. The dots correspond to
the experimental points. As expected, the observed patterns
have an even number of petals. The dashed line corresponds to
the theoretical prediction in the case of complete saturation.
Saturation is more efficient for modes of low m values which
have a smaller radial extension.

occurring for well-defined values of 4. The variation of
the number of petals N in the pattern versus 1/d is plot-
ted in Fig. 3. We remark using Eq. (3) that, when
cm(I7) =1 and for /=0, the number of petals N =2m
should in average be proportional to 1/d, the propor-
tionality coefficient being (n —/2)(kw?/2). Using n=n
and kw?/2=1.8 m, we have plotted, with dashed lines, in
Fig. 3 this theoretical straight line which is in agreement
with the experimental points for low values of N. For
larger values of NV, the shift between the straight line and
the experimental points can be interpreted from the de-
crease of ¢;,(Iy) when m increases. Actually, in this
range of parameters, it should also be noticed that the
nonlinear terms couple Laguerre-Gauss modes of dif-
ferent / values so that a description in terms of pure
Laguerre-Gauss modes is probably inappropriate. More-
over, the understanding of what occurs for large values of
m requires a good knowledge of the incident field distri-
bution for r>w, i.e., in a range where the Gaussian dis-
tribution may no longer be correct. The Laguerre-Gauss
modes are thus probably a good description of what
occurs for low m values but a more complex description
may be necessary for high m. One can also wonder why
the only modes that are observed correspond to small
values of /. We think that these modes are less affected
by the strong absorption occurring in the rubidium cell.
As shown by several authors [18], when the incident light
is nearly resonant with a D, transition of alkalis, fila-
ments of circularly polarized light propagate with a much
weaker absorption. In the present experiment, the super-
position of the oscillating beam with the laser beam gives
a total field which is mostly o™ circularly polarized in
one petal and mostly ¢~ polarized in the next petal (be-
cause of the m phase shift between consecutive petals).
As a result, the petals constitute a regular array of fila-
ments which should lead to a maximum transmission.
Although the present study is devoted to the under-
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standing of the static properties of patterns, it can be no-
ticed that temporal instabilities, similar to those reported
earlier for counterpropagating beams [8,19], can also be
observed for the scheme described in this paper by slight-
ly changing the experimental conditions. A temporal
variation of the intensity emitted in the petals can then be
detected. This instability is most easily found when the
backward beam is misaligned and for patterns having a
large number of petals. The typical frequency is in the
range 10 kHz-1 MHz which suggests that these temporal
instabilities are also driven by optical pumping.

In conclusion, we have shown the occurrence of new
stable patterns for a system consisting of a nonlinear
medium and a feedback mirror. A key point in our
analysis is the occurrence of saturation terms that cannot
be expended in powers of the intensity and which lead to
patterns very different from those found in Kerr media.
This first experiment should stimulate new developments.
First, a more precise theoretical analysis is certainly
necessary. It should permit us to understand the behavior
of patterns having a large number of petals and more
generally to predict the pattern and its intensity as a
function of the various parameters (beam waist, distance
to mirror, incident intensity, and frequency detuning).
Second, these flowerlike patterns may be quite general:
We expect them to be found for other types of feedback
system (counterpropagating beams for example) and oth-
er nonlinear media, the main requirement being the oc-
currence of an efficient saturation of the nonlinearity.

*Present address: Department of Physics, Yerevan State
University, Mravian 1, 375049 Yerevan, Armenia.

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993), and references therein.

[2] L. A. Lugiato, Phys. Rep. 219, 293 (1992), and refer-
ences therein.

[3] G. Grynberg, Opt. Commun. 66, 321 (1988); G. Gryn-
berg et al., Opt. Commun. 67, 363 (1988); J. Pender and
L. Hesselink, J. Opt. Soc. Am. B 7, 1361 (1990); A.

2382

Petrossian et al., Europhys. Lett. 18, 689 (1992); R.
Chang et al., Opt. Commun. 88, 167 (1992); T. Honda,
Opt. Lett. 18, 598 (1993).

[4] G. D’Alessandro and W. J. Firth, Phys. Rev. Lett. 66,
2597 (1991); Phys. Rev. A 46, 537 (1992).

[5]1 R. Mac Donald and H. J. Eichler, Opt. Commun. 89, 289
(1992); M. Tamburrini er al., Opt. Lett. 18, 855 (1993);
B. Thuring, R. Neubecker, and T. Tschudi, Opt. Com-
mun. 102, 111 (1993); E. Pampaloni, S. Residori, and F.
T. Arecchi, Europhys. Lett. 24, 647 (1993).

[6] G. Grynberg and L. A. Lugiato, Opt. Commun. 101, 69
(1993).

[7]1 A. L. Gaeta et al., Phys. Rev. Lett. 58, 2432 (1987); A.
L. Gaeta and R. W. Boyd, Phys. Rev. A 48, 1610 (1993).

[8] D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, Phys.
Rev. Lett. 61, 1827 (1988).

[9] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209
(1987); W. J. Firth et al., Phys. Rev. A 46, R3609
(1992).

[10] G. Giusfredi et al., J. Opt. Soc. Am. B 5, 1181 (1988);
M. LeBerre et al., J. Opt. Soc. Am. B 7, 1346 (1990); M.
LeBerre, E. Ressayre, and A. Tallet, Phys. Rev. A 43,
6345 (1991).

[11] W. J. Firth, J. Mod. Opt. 37, 151 (1990).

[12] G. Grynberg, J. Phys. 11T (France) 3, 1345 (1993).

[13] G. Grynberg et al., Europhys. Lett. 17, 213 (1992).

[14] M. Vallet, M. Pinard, and G. Grynberg, Opt. Commun.
81, 403 (1991).

[15] F. Papoff et al., Phys. Rev. A 48, 634 (1993).

[16] If, for example, the incident beam corresponds to the fun-
damental mode of a hollow cylindrical guide, the solutions
for the instability are expected to depend on Jn(Knmr)
% cos(m0) expliknmz) Wwith Kin+kZ.=k2 Here also
flowers having a number of petals varying with d are ex-
pected but these flowers obviously do not correspond to
Laguerre-Gauss modes.

[17] There is also in the central part of the pattern a com-
ponent associated with a nondegenerate on-axis instabili-
ty.

[181 A. C. Tam and W. Happer, Phys. Rev. Lett. 38, 278
(1977); R. Holzner et al., Phys. Rev. Lett. 69, 2192
(1992).

[19] G. Khitrova, J. F. Valley, and H. M. Gibbs, Phys. Rev.
Lett. 60, 1126 (1988).



FIG. 2. Far-field patterns observed for d =11 (a), 17 (b),
and 24 cm (c). The central part of the pattern corresponds to
the pump beam which is slightly depolarized by the windows of
the cell. These patterns look like flowers and can be described
by Laguerre-Gauss modes with /=0 and m =10 (a), m =8 (b),
and m =6 (c). The relative phase between consecutive petals is
studied using an interference with an auxiliary beam. As shown
in (d), a black fringe in one petal is followed by a white fringe
in the next petal. This n phase shift, shown here for the case of
a 12 petals pattern, is also observed for the other patterns.



