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Optical Signatures of a Tightly Confined Bose Condensate
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Optical properties of a Bose condensate of N, atoms tightly confined to a harmonic oscillator potential

are studied. A resonantly illuminated condensate scatters as much light as x independent atoms, where

x depends on the size of the condensate and on the wavelength of light but not on N„ the linewidth of
the resonance is N, /x times larger than the linewidth of an individual constituent atom. If the conden-

sate is bigger than a wavelength, light is predominantly scattered in the forward direction.

PACS numbers: 42.50.Vk, 05.30.Jp, 67.65.+z

Laser cooling of atoms to microkelvin temperatures
and even below [1-3], substantial atomic densities
reached in various traps [4,5], and cooling methods that
do not belong to the traditional domain of laser cooling
[6,7] have bolstered the hopes that Bose condensation of
a weakly interacting gas will be achieved. Considering
the prominence of lasers in such schemes, the question of
the optical signatures of the Bose condensate immediate-

ly arises. In fact, it has been predicted that a spatially
homogeneous dense condensate reflects off all near-
resonant light [8,9].

In this Letter we discuss induced and spontaneous opti-
cal processes in a condensate of an ideal Bose gas bound

by an external potential Respo.nse of a bound conden-
sate to short light pulses was discussed by Lewenstein and

You [10],but here the focus is on steady-state excitation.
Diametrically opposite to the earlier results [8,9], we find

that on resonance light scattering from the condensate is

strongly suppressed in comparison with scattering from

the same number of noncooperating atoms. The
difference arises because in our examples the condensate
is small enough that conservation of momentum is sorne-

what relaxed. We refer to this circumstance as tight
confinement. The resonance line of the condensate is

enormously broad, which may be of help in the detection
of Bose condensation. You, Lewenstein, and Cooper [11]
have recently come to the same conclusion using more
elaborate methods.

The effects of the Bose-Einstein statistics depend on
the occupation numbers of the individual quantum states.
A fully quantized treatment of the center-of-mass (c.m. )
motion of the atoms is therefore mandatory. In our
simplified model atoms with mass M move in an isotropic
harmonic oscillator (HO) potential characterized by the
mechanical oscillation frequency v. The length and mo-

mentum scales of the HO are denoted by l = (h/ Mv) 't

and h/I, respectively. The eigenstates of the c.m. motion

In) are labeled by the index n =(n„,nr, n, ), and the corre-
sponding eigenfrequencies are called eA. The index n =0
stands for the lowest-energy c.m. state. For the internal

states of the atom we adopt the conventional two-state

model: ground state Ig), excited state Ie). These are

separated by the frequency to, and the dipole moment

matrix element between the states is called d. The joint
internal and c.m. states of the atoms are denoted as

Ign)=Ig)In), etc. Finally, in the most general case the

electromagnetic field is quantized. We enumerate the

plane wave modes of the field by an index q that incorpo-

rates both the wave vector of the photon q and the polar-

ization vector e~. The frequency of the mode q is Aq

=clql
Our development involves several parameters, limits,

and conditions. We therefore pause to discuss represen-

tative numerical values, which may be plugged in later to
check that the assumptions of the theory are plausible.

However, it should be understood that our intent is not to

anticipate or design a specific experiment. We use the D2

line optical transitions of Cs atoms in a trap with the os-

cillation frequency v=2trx10 Hz [4] as our example.

We estimate the temperature for Bose condensation as
T=0.1 pK. The maximum number of atoms in the nor-

mal fraction, and hence the minimum number of atoms

needed to obtain Bose condensation, scales like N„
=1.202(kttT/tlv) [12], giving N„=10 . If the total

number of atoms N exceeds N„, the excess N, =N —N„
atoms go to the ground state Ig0) and form the Bose con-

densate. Let us say half of the atoms are in the conden-

sate; then N, =10 . The HO length scale, and hence the

characteristic size of the condensate, is I =3 pm, and for
resonant light we obtain IIqI =20. The matrix element d
is taken such that the correct optical linewidth y
=d to /6trhepc =2trx2. 6 MHz results. The gas is

homogeneously broadened; at 0. 1 pK the frequencies of
the c.m. motion of thermal atoms and the linewidth are
bound to satisfy eA&& y.

We borrow a few standard procedures from the theory
of light pressure [13] and from many-body theory [14].
For the time being we assume a truly ideal (noninteract-

ing) Bose gas. The Hamiltonian for the system consisting

I

of the Bose gas and the photons thus is

—=g [s,b~,bs, + (c„+to)b t b„]+g coqaq aq
—g [g(q )(n'Ie'q'In)b t, bs, aq+ H.c.] .A gA gA A
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The first two terms in (I ) are the energies of the ground-
state and excited-state atoms, and the third term is the
Hamiltonian of the free photon field. The final term
governs the atom-field interactions. For instance, a pro-
cess in which absorption of a photon in the state q con-
verts a ground-state atom in the c.m. state ~n& to an excit-
ed atom in the c.m. state ~n'), ~gn) ~en'), is governed by
the matrix element —g(q)(n'~e'~'~n). The coupling co-
e%cient pertaining to the internal states is ((q)
=JQv/2I1eoVev d, where V is the quantization volume.
The matrix element between the motional states ~n) and
~n') derives from the c.m. position operator r". e'~' is a

unitary momentum translation operator for the center of
mass. The explicit matrix element in (1) thus is the over-

lap between the c.m. state ~n') and the c.m. state ~n)

shifted by the momentum hq. The condensate is

modeled in the customary way by treating its annihilation
operator bso as a e number,

bgp= (2)

b.' =g(n'~e'" '~n)b, '„
n'

(4)

of the excited states ~ey, ) obtained with the momentum
translation hk from the original excited states (en). The
driving field then only couples states in pairs [~gn), ~ey, )].
Also, in line with Eq. (2), bso is viewed as the c number

JN, . All matrix elements referring to the state ~g0)

therefore pick up a large multiplier JN, . Combining
these two observations, we retain in our theory only the
condensate and its corresponding excited state ~ego). The
Hamilton lan becomes

We assume that the condensate is probed by a weak
laser beam, whose mode index and frequency are denoted

by k and A. The response reflects a balance between
transitions driven by the external field, and spontaneous-
emission damping that gives a finite lifetime to the excit-
ed atomic states. The spontaneous widths of the excited
state are much larger than any relevant c.m. frequency
s„. Consequently, we proceed from now on as if s„=0.

As usual, the external field can be regarded as classi-
cal, and the corresponding photon operator can be treated
as a c number. The part of the Hamiltonian responsible
for induced excitations may be rewritten

—g [xe '"'(n'~e'"'~n)b, „bs„+H.c.], (3)H

n, n'

where K' d E/2h is the Rabi frequency that ensues
when a classical field with amplitude E drives the internal
transition in a single atom. This classical-field Hamil-
tonian contains a subtle assumption: The driving field is

of the undamped and dispersionless form e'"' in the
whole sample. In effect, we take the condensate to be op-
tically thin. %e return to this assumption below.

Equation (3) suggests that one should resort to the bo-
son operators

—= rob Jbo+ g O~aq~aq —x JN, (e '"'bf+ H.c.)
q

—JN„g [g(q)&Ole'" ""lo)bja +H.c.]. (5)

The Hamiltonian (5) describes the familiar problem of
a quantum HO with frequency co, driven by a classical
force at the frequency 0 and coupled to a photon bath
[15]. The only twist is the matrix element (O~e' ~ " '~0).
To consider this we continue to assume that the wave-

length of the driving light is smaller than the size of the
condensate, I~k~))1. The largest momenta available in

the HO ground state ~0) are of the order h/I, so the
momentum in the excited state ~ego) is also spread by
—h/I. Spontaneous emission from ~ego) back to ~g0) is

possible only for photon modes q whose momenta hq
roughly lie in a sphere of radius It/I around the momen-
tum of the incident photons Ak. All of this is expressed
in the matrix element.

By implication, the range of frequencies of photons
that couple to the atomic excitations is restricted too:
Ace-e/I. Nonetheless, we take Ace to be much larger
than any other relevant frequency parameter in the prob-
lem, and thus assume that the coupling is eA'ectively in-

dependent of the frequency of the photon. This "fat con-
tinuum" case permits the Markov approximation as usual

[15],with the usual result that the coupling to the photon
bath leads to exponential damping of the HO.

Momentum conservation only permits spontaneous
photons whose momenta lie in a cone with opening angle
—(l~k() ' around the momenta of' the incident photons
Ak. The rate of emission is thereby reduced by a factor
~(l~k~) corresponding to the solid angle available for
spontaneous photons. On the other hand, the explicit

JIV, in the Hamiltonian enhances the rate of spontane-
ous emission by the factor A, . All told, both a simple-
minded golden rule calculation of the HO transition rates
due to coupling to the photon vacuum and a full-blown

analysis of spontaneous emission as in Ref. [15] give the

damping rate of the amplitude of the HO as

r =N, yf(llikli) .

Here f(x) is a function that in the limit x ~ behaves
as f(x) =

& x . In equilibrium the expectation number
of' atoms in the state ~ego) is

(bJb,) =N, ~'/[(~ n) '+ r'] . —

At low light intensity, (bubo& from Eq. (7) is numerically
equal to the excitation probability for a two-state atom

with the Rabi frequency JN, x and transition linewidth

I . The difference between a HO and a two-state atom is

that the HO does not saturate with increasing intensity.
Equation (7) has three remarkable implications. First,

since I ~ A„ for a macroscopic Bose condensate the opti-
cal resonance is extremely broad. Second, while there are

particles in the Bose condensate, on resonance
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(0 =to) the number of atoms directly excited from the
condensate is of the order %, '. Third, for on-resonance
driving light the total number of photons per unit time
scattered by the condensate is

dNg/dt =2I (bilbo) =2n'@ATE I /hk, (8)

which is independent of N, .
The rate of photon scattering should be compared with

the number of photons per unit time entering the conden-
sate, dIVt/dt Th. e latter is estimated by multiplying the
flux of incoming photons by the cross section of the con-
densate, say, xl . We find

dNg/dt =4(dNt/dt ) . (9)

The number of scattered photons seems to exceed the
number of incoming photons by a factor of 4. Evidently
the thin-sample approximation is not strictly valid. Inas-
much as lk~ &&1, the optical thickness of the Bose con-
densate rather seems to be of the order of 1. Such a mild

breakdown of the thin-sample approximation may intro-

duce inaccuracy in our numerical values, but we deem it

unlikely that qualitative considerations would be affected.
We are now in a position to discuss the optical signa-

tures of the Bose condensate. The optical thickness of the
condensate is approximately unity, so the condensate per-
turbs the incident light appreciably. However, spontane-
ous emission predominantly takes place in the forward
direction, in a cone with the opening angle —(l~k~)
This (not coincidentally) also is the order of magnitude of
the diffraction angle from an object of size I. All told, the
condensate should cast interference fringes with the in-

cident light resembling diff'raction from a dielectric object
of size I. Fluorescence from the condensate to the sides,
and reflection, may take place only as a result of multiple
scattering, and should be virtually absent.

Previous calculations [8,9] predict that the condensate
reflects near-resonance light. These analyses are based
on a partial diagonalization wherein photons and excited
atoms are combined into composite degrees of freedom.
The dispersion relation of the composite modes has a gap
at the atomic resonance frequency, which implies
reflection. The difference from our approach is that in

the earlier calculations exact momentum conservation fol-
lows from the exactly zero momentum of the condensate.
Excited atoms with a given momentum p therefore only
couple to photons with momentum p [16]. Such an
atom-photon problem with 2 degrees of freedom for each

p can be diagonalized, and a gap predictably opens up.
In contrast, in our model the excited atom is coupled to a
range of photons with a smooth distribution of frequen-
cies, a situation that tends to lead to broadening of the
excitation rather than a gap.

They key here is the inequality Ato=c/I » I . This in-

equality validates the Markov approximation in our argu-
ment, and ultimately defines the case we call tight
confinement. Conversely, as the condensate gets bigger

so that conservation of momentum becomes sharper, the
results of Refs. [8] and [9] should be regained. The in-

equality c/I » I may also be read in an alternative
manner, namely, that light has time to fly across the con-
densate during the damping time I '. This is an obvious

necessary condition for the entire condensate to act in

concert. The limit of tight confinement might equally
well be dubbed the limit of complete cooperation.

So far we have mostly ignored the atoms that do not

belong to the condensate, as well as transitions between

the condensate and the normal-state fraction. A few

comments on these topics are due. Transitions within the
normal-state fraction produce light scattering that may
mask the phenomena associated with the condensate.
Such scattering is difficult to analyze quantitatively (cf.
[17]), but qualitative arguments may be made. The
reason for the suppression of scattering from the conden-

sate is that a large numerical factor JN, in the matrix
element for the transition between the condensate and

~elttp) leads to strong spontaneous damping of the transi-
tion. For our example the maximum thermal occupation
number of a noncondensate state is kttT/Ii v-200, so the
analogous suppression of fluorescence should be much
less prominent in the noncondensate fraction. As a result,
near resonance the normal gas is likely to be optically ex-
tremely thick, and simply hides the condensate from view.

The best bet for observing Bose condensation probably is

to look at large atom-field detunings, of the order I, at
which the normal-state fraction has become inert.

To estimate the leakage rate of atoms from the state
~eiIto) to the noncondensate states let us temporarily as-
surne that the rate of such transitions equals the one-
atom spontaneous emission rate 2y. %'e thus have an es-
timate for the depletion rate R-2y(bilbo), which for
detunings ~to

—Q~ ~ I becomes R-2y[(a'/y) /N f ].
This estimate actually is low: The maximum thermal oc-
cupation number of a noncondensate state is of the order
kttT/hv, which translates into enhancements of spon-
taneous emission rates into the individual noncondensate
states by factors of up to kttT/h v. Our initial estimate R
must be multiplied by a factor that depends on the
thermal occupation numbers of all states accessible by
spontaneous emission from ~eitto). We do not analyze the
details here, but only note that the factor obviously is be-
tween 1 and kttT/h v+1. Nonetheless, the large number

N, in the denominator of the depletion rate R testifies to
the robustness of the condensate against optical interro-
gation.

While our argument was phrased for a condensate
bigger than the wavelength, 1~k~ && I, the opposite limit is
even easier to handle. Conservation of momentum is then
inconsequential, and the condensate, being smaller than
the wavelength, cannot distinguish between directions.
On resonance, at low light intensity, a condensate of N,
atoms looks exactly like one atom. At higher intensity
the diff'erence emerges that the transition between the
condensate and ~eitto) does not saturate like the transition

2377



VOLUME 72, NUMBER 15 PHYSICAL REVIEW LETTERS

in one atom would do. On the other hand, even far away
(-I N, y) from resonance the condensate still scatters
photons like one near-resonance atom.

We now briefly consider the interactions between con-
densate atoms. Wanting an ab initio treatment, we pro-
pose the following strategy: The hallmark of quantum
superfluids is that an order parameter akin to a macro-
scopic wave function can be associated with the system

[18]. For the ideal Bose gas ilro(r) QN, (r~0) is a natu-
ral choice for such a macroscopic wave function, but an

analogous ilrr(r) should exist for any interacting conden-
sate. In our theory lira(r) has in effect been coupled with

the electromagnetic field as a rigid entity; absorption or
emission of photons leads to creation or annihilation of
momentum-translated replicas of ilro(r). We postulate
that in an interacting system ilr&(r) is simply used in lieu

of lire(r). The macroscopic wave function ilrr(r) is to be
determined from the theory of an interacting Bose con-
densate, but this extra step notwithstanding, the results
will be qualitatively similar to the results from the theory
of an ideal Bose gas. The main difference is that the ac-
tual size of the interacting condensate [19,20] is em-

ployed as the size parameter I. Resonant dipole-dipole
interactions (cf. [2[]) also warrant a mention. It can be
easily seen that they shift the resonance frequency co of
the excitation mode (eilro) already in first order in nonde-

generate time independent perturbation theory, but we do
not attempt a quantitative calculation. We have ignored
the frequency shift analogous to the Lamb shift associat-
ed with the linewidth I anyway, so we do not know exact-
ly where the resonance of the condensate is.

In sum, we consider a tightly confined Bose condensate
in which the flight time of light across the condensate is

the shortest relevant time scale. Such a condensate of N„
atoms scatters much less light than N, independent
atoms, but in exchange the condensate continues to
scatter much farther into the wings of the transition than
an individual atom. If the condensate is big enough that
difl'raction from it may exhibit directional preferences,
the condensate predominantly scatters light in the for-
ward direction. These properties could be utilized for op-
tical detection of Bose condensation.
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