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Quantal Treatment of Cold Collisions in a Laser Field

M. J. Holland, K.-A. Suominen, and K. Burnett
Department of Physics, Clarendon Laborutory, Parks Road, Oxford, OX1 SPU, United Kingdom

(Received 24 June 1993)

We study the kinetic energy changes taking place in collisions of atoms in a laser cooled cloud.
We present a quantum approach, which can treat cold collisions at temperatures well below the
Doppler limit of laser cooling. In our numerical treatment we observe an increase in the kinetic
energy which depends strongly on the laser detuning and intensity.

PACS numbers: 32.80.Pj, 32.80.Bx, 34.50.Rk

The densities now achievable by laser cooling mean
we have to look into the efFect of interactions between
ultracold atoms. This is especially true as the collisions
occur in the presence of laser fields, i.e., the fields that
are doing the cooling and trapping. We need in particular
to determine how these collisions limit the densities and
temperatures that one can achieve. Proposed methods
of achieving Bose-Einstein condensation based on alkali
atoms are critically dependent on the limiting densities
obtainable in laser cooling schemes [1].

There have been several studies of how long range col-
lisions inhibit laser cooling and produce excess heating
via extra difFusion [2]. These analyses use semiclassical
methods and in their most efBcient form simply deter-
mine the diffusion coefficient for an atom with a static
partner using the quantum regression theorem. They do
not treat the quantal motion of the atoms and are not
able to treat correctly the important region of shorter
ranges, where the dipole-dipole force tunes the atomic
binary system into resonance with the field. This is par-
ticularly important for the production of kinetic energy
in the relative motion [3—7]. The only quantal treatment
of this problem that we are aware of does not treat the
efFect of population recycling [8]. Fortunately, we have
now been able to exploit the recently developed Monte
Carlo method to produce a fully quantum treatment of
this critical issue.

There are two possible mechanisms for excitation in
long range collisions to produce heating. First, a pair
of atoms may undergo a fine structure changing collision
while in the excited state. This leads to an increase in
the kinetic energy of the pair. Second, spontaneous decay
can take the excited system back to the ground state,
retaining the kinetic energy increase gained by rolling
down the excited state potential. In this Letter we study
the latter eEect, i.e., radiative heating. We focus on the
bulk of collisions that produce moderate heating, rather
than on the less likely but still important collisions that
produce major kinetic energy changes and trap loss.

We consider the translational wave packets of the
atomic system on the ground and excited states cou-
pled by the laser field. We solve numerically the coupled
time-dependent two-state Schrodinger equation. The
spontaneous decay is included by using the stochastic

Monte Carlo method [9,10], which allows random quan-
tum jumps from the excited state to the ground state.
Individual time-dependent wave functions can then be
combined and in the limit of a large ensemble should
agree with treatment based on the density matrix. This
method gives an enormous advantage in comparison with
a direct method based on the density matrix and enables
us to do a calculation of the properties of an open system
which otherwise would not be computable given the core
memory of present machines.

We decompose the three dimensional combined wave
function for the two colliding atoms into partial waves
corresponding to different angular momenta and consider
a simple model of two levels. We ignore hyperfine struc-
ture, the spatial dependence of the dipole moment, and
the precise structure of the inner core, including devia
tions of the excited state structure from the dipole-dipole
potential —Cs/Rs, where R denotes the interatomic dis-
tance. However, the effect of the centrifugal barrier
hat(l + 1)/2pR~ on both the ground state and excited
state is included in order to estimate the cross section
of the collisions leading to heating, although l ~ 1' j t
transitions are still ignored. We consider a temperature
region which is well below the Doppler limit of laser cool-
ing, but far enough above the recoil limit so that we can
ignore photon recoil efFects on the dynamics.

We apply our model to the Si/2 ~ Ps/q transition in
a cesium quasimolecule, between the fine structure states
0+ (ground) and 0+ (excited). An example of the level
configuration for certain values of the laser field detuning
b (atomic resonance frequency minus laser frequency),
coupling strength 0, and angular momentum quantum
number t is given in Fig. 1. The ground state level has
been raised by the frequency of the laser field so that the
resonance point becomes a bare state level crossing. We
scale our spatial variables with the transition wavelength
A over 2x: A 136 nm; this distance unit is equal to
2560ao, where aa is the Bohr radius. Our energy unit is
fPk&/21' = 2.74 x 10 I J; p, is the reduced mass of the
system and k~ = 1/A.

For the dipole moment we take the molecular values
of Ref. [5]. In our scaling the atomic linewidth is I'

q
——

1240 and the dipole force factor is C3 ——1.55I' t. The
molecular linewidth is I' = 41 ~/3. Altogether the scaled
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Schrodinger equation to be solved is, in the absence of fluorescence,
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where 4s and 4, are the probability amplitudes for the

l

bare ground (g) and bare excited state (e). The kinetic
energy operator ur~ in our scaling is the square of the
relative momentum operator p, which scales with Mcg.

Our study consists of simply propagating a Gaussian
wave packet, initially in the bare ground state, into the
crossing region and the inner core area behind it, and
eventually back to the area far from both the inner core
and the crossing region. Although in many cases the
field-dressed, i.e., adiabatic, states form a more natural
basis to work with than the bare states, we prefer the
latter. The inclusion of quantum jumps, needed in the
Monte Carlo simulations of dissipation, is simpler in this
basis. The crossing region is usually taken to be the
area where the adiabatic states and the bare states dif-
fer strongly (see Fig. 1). In the momentum space our
initial wave packet has a mean po = —10 and a width
b,po = 2. Eventually one needs to determine the colli-
sional momentum change matrix W(ps, p) for different

ps and vanishing K@0, but for the moment we only look
at a single po and concentrate on the effect of other pa
rameters on heating.

Because of the crossing and random quantum jumps,
there are several "paths" the wave packet can take as
it enters the interaction region surrounding the cross-

ing point, becomes later reflected by the inner core, and
eventually traverses the crossing region again on its way
out. Typically most of the packet passes smoothly from
the ground state to the excited state as it traverses the
crossing region, and becomes rapidly accelerated under
the influence of the —Cs/Rs potentiaL However, before
it gets too far, a quantum jump brings it back to the
ground state. After a reflection at the core, the packet
reenters the crossing region. If it has been su%ciently
accelerated, it experiences substantially less excitation
than during the first passage. It is important to note
that phase efFects, such as Stiickelberg oscillations, are
absent due to the spontaneous decay.

The results obtained by using the Monte Carlo method
are only approximations of the density matrix result.
The correspondence improves as the number of mem-

bers (N) in the ensemble is increased. Our experi-
ence is that the characteristic behavior is obtained arith
about N 50, although peaks of individual wave pack-
ets are still slightly visible in the final result. However,
to smooth out the spikes requires ensemble sizes around
N & 500; such sizes are not practical when one intends
to span a large and multidimensional parameter space.
A discussion of suitable ensemble sizes and a review of
both the master equation and the Monte Carlo methods
for wave packet dynamics can be found in Ref. [10].

If we were working at Doppler temperatures, where the
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for each momentum corqponent y in the ground state
wave packet. Here ct = 3(b,4jCs) ~ is the absolute slope
of the excited state potential at the crossi~~ point (an
parameters are given in scaled units). The excited com-
ponents then accelerate down the slope towards the core
and in a dissipative system are eventually brought back
to the ground state by spontaneous decay.

In Fig. 2(a) and Table I we present maLrnples of our
results which show that clear increases in the mean and
the width of the momentum distribution occur after a
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FIG. 1. Here we show an ex~pie of the level co~~~a-
tions studied in this I.etter. The soM hnes correspond to
the bare states and the dotted bern to the SeId dressed, i.e.,
adiabatic states. The centrifugal barrier on the ground state
for L = 5 is also given. The des~i haxLIonta1 Bne shmees the
level of kinetic energy correspoa~&~ to the H~&eal equiva

lent of our initial wave packet with pp = —10. The specific
parameters used here are b = 2I',t and 0 = I" t/5.

mean kinetic energy of the colliding pair is much larger,
we could apply the Landau-Zener theory which neglects
spontaneous decay in the crossing region of the poten-
tial surfaces. At the recoil temperatures we consider
in this Letter, spontaneous decay cannot be ignored in

the curve crossing regions, and the simple Landau-Zener
model gives poor quantitative predictions. It does, how-

ever, provide insight into the parameter dependence of
the heating mechanesm on the detunlng 6 and coupling
strength Q. In t~i~ approximation the probability to be
excited as the crossir~ region is traversed is [11-13j

( zAz)
Wz =1 —exp l—

I I~I~)
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TABLE I. Here we show the additional data for the case

where 0 has the constant value 0.21' t, but 6 changes. The
ensemble size is ¹ the number n of quantum jumps in each

simulation run within the ensemble has the average A and

extreme values Amjn and nm~. The percentage of no-jump

members in the ensemble is given in the seventh column. The

change b (quid„) in the semiclassical kinetic energy is normal-

ized to the initial kinetic energy; also, it is calculated and

normalized using the distributions of Fig. 2(b) only up to

]pi = 100.

b,/r, t l ~msx &(~-)
2 5 19 3
4 5 13 6
6 0 10 6
8 0 4 6

FIG. 2. Here ere present the Snal distributions of absolute
momentum ~pi (solid lines), for diS'erent values of detuning 4
and coupling strength Q. In (a) we present the case where b, is

changed but 0 is kept constant. In (b) they are both changed,
but the ratio 0/b, is always equal to 0.1. The dotted line at
the bottom of both (a) and (b) is the initial distribution. In

(a) the ensemble sizes N are 121, 136, 65, and 52, in order of
increasing 4, and similarly in (b) 121, 50, 53, and 62.

cold collision, even for a modest coupling strength A. As

the detuning is increased, the heating saturates, because
the increase in the slope (and hence acceleration) in the
excited level is counteracted by the diminished excita-
tion probability, as indicated by Eq. (2). The number

of quantum jumps per ensemble member decreaNzi rad-

ically as detuning is increased, since the overall size of
the excited population determines the probability for a
quantum jump to take place. As the portion of no-jump
cases becomes appreciable the final momentum distribu-
tion becomes a combination of a large, unafFected com-

ponent and a small but wide tail.
If we increase both the detuning and the coupling to-

gether so that the ratio between them is maintained, we

see a substantial increase in kinetic energy change [Fig.
2(b) and Table II]. As the detuning is increased, the
crossing point moves closer to the core and the increase
in the slope of the excited state potential hss a strong
efFect on the acceleration. However, since the coupling
is also increased, the excitation probability does not fall

very rapidly with the increase in detuning. Hence a ma-

jor part of the wave packet always experiences strong
acceleration.

In our approximation the repulsive ground state core
is represented by a solid wall at R = 0 when / = 0. The
nonzero values of / affect the excited state very little,
but on the ground state a clear barrier with a classical
turning point Ri g/(/+ I)/happ~ appears. The efFect of
different values of / on heating with certain combinations
of detuning and coupling is shown in Fig. 3. When l

is increased, this point moves outward and eventually
meets the crossing point. As expected, we observe then a

rapid reduction in the heating, and a rough cutofF value

l ~ can be obtained. For values of / larger than /m~
the barrier simply reflects the incoming packet before the
crossing region is reached.

Collisions introduce an extra difFusion term which can

be estimated by D, = 2zn[ppi Qi'p (2l + 1)b,(xiii„„),
where n is the density of atoms per cubic wavelength.

This can be compared with the difFusion coefficient D, =
3Az/4I'~q for Sisyphus cooling at large detuning [14]. For

the detuning 6 = 8I' t and driving field 0 = 0.8I' t,
the simulation results suggest values of /m~ = 10 and

h(mk;„) = 25. The density at which the two diffusion

coefficients are equal is then 2 x 10iz cm s. This is only

a rough estimate of the density at which collisional heat-

ing will become important since the collisions produce a
non-Maxwellian distribution of atomic velocities. More

simulations for difFerent values of pp are required before

one can fully map our results into the thermodynamics of
the trapped and continuously cooled atom cloud. Many

of the details mentioned earlier and ignored in our treat-
ment can be added in order to make it correspond better
with specific systems, although then some generality will

be lost. Also, the efFect of the centrifugal barrier may

vary strongly for difFerent transitions and types of atoms.

By allowing a third level one might be able to study both
the fine structure heating and radiative heating within a
single quantum model. Then one needs detailed informa-

tion of the potentials all the way between the core and the
crossing region. Wave packet dynamics in the inner core
region has very different numerical requirements than at

b./r t
2
4
6
8

n/r. ,
0.2
0.4
0.6
0.8

N A

51 11
50 12
53 12
62 14

&max

19
23
25
33

b, (xiii,;„)
3
12
20
27

TABI,E II. The additional data corresponding to Fig. 2(b).
Notation is the same as in Table I.
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the long range crossing region, so their unification under
a single scheme is far from trivial. We have demonstrated
a novel theoretical technique that shows how collisions in
a laser field limit the densities one can reach at particu-
lar temperatures. This has important consequences for a
whole range of experiments (e.g. , Bose-Einstein conden-

sation) planned with laser cooled atoms.
This research was supported by the U.K. Science and

Engineering Research Council. M.H. acknowledges sup-

FIG. 3. Here we present the final distributions of absolute
momentum [p] for some values of I, and for two detunings.
The dotted line, presenting the initial distribution, is drawn

overlapping with t = 15 values, in order to show the small

but finite changes. In (a) the ensemble sizes are 121, 51, 54,
and 13, in order of increasing f. Similarly in (b) we have

N = 136, 52, 50, and 15. The crossing point is given by the
expression R„= (Cs/b, ) ~, and has values R„=0 92 (a.)
and R„=0.73 (b). The classical turning points for different
values of l are, for both (a) and (b), Rs = 0.55, Rio = 1.05,
and Rqs ——1.55. The value for lm~„ is expected to decrease as
the detuning b is increased; such behavior becomes clearly
visible when (a) and (b) are compared.
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