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Chaos in Axially Symmetric Potentials with Octupole Deformation
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Classical and quantum mechanical results are reported for the single particle motion in a harmonic os-

cillator potential which is characterized by a quadrupole deformation and an additional octupole defor-
mation. The chaotic character of the motion is strongly dependent on the quadrupole deformation in

that for a prolate deformation virtually no chaos is discernible while for the oblate case the motion shows

strong chaos when the octupole term is turned on.

PACS numbers: 24.60.Lz, 21.60.Ev

The mean field approach is of central importance in

any theoretical description of a many body system. In

nuclear physics it is the basis for the shell model and its
extensions such as collective states. Its success has been
further demonstrated in the application to deformed nu-

clei and to metallic clusters where spherical symmetry is

given up because of experimental evidence. Usually,
quadrupole deformation is considered to be the major de-
viation from spherical symmetry. However, more recent-
ly a possible octupole contribution has been taken into ac-
count for a number of reasons [1,2].

Inclusion of an octupoie term in addition to a quadru-
pole term renders the classical single particle motion
nonintegrable. In fact, the system turns out to be chaotic.
This has been discussed by a number of authors with

various degrees of simplification [3]. A nicely systematic
approach is given in [4], where the motion in a quadru-
pole deformed cavity is analyzed and the terms that give
rise to actual chaotic behavior are clearly distinguished.
In a recent investigation [5] the study of classical motion
in a cavity with oscillating walls of even and odd higher
order multipoles has led to interesting conclusions about
elastic versus dissipative behavior of a noninteracting gas
depending on the integrability or nonintegrability of the
equations of motion. Surfaces of section are used to dis-
cern the onset and degree of chaotic motion.

This paper is similar in spirit in that we investigate a
simplified model where we leave out terms, which, albeit
physically important, are prone to blur the analysis when
the interest is focused on the essentials that give rise to
chaotic behavior. Since our aim is directed not only to
the classical but also to the corresponding quantum
mechanical motion, we leave out the spin-orbit term and
the I term present in the Nilsson model to render as
closely as possible the analogy between the classical and
quantum cases. The importance of the I term is well
known in nuclear physics and for metallic clusters [6].
To determine its role in the context of chaotic motion the
corresponding classical case ought to be studied. We
defer treatment of this term. Despite the simplifications,
such a model allo~s one to understand the main features

of shell structure eff'ects, for example, in super (hyper)
deformed nuclei [7,8]. Recent experimental data of su-

perdeformed K isomers in nuclei [9] and electronic shell

structure effects in metallic clusters [6] clearly underline

the importance of oblate deformation. Therefore we in-

vestigate in the present paper the effect of the octupole
term for prolate and oblate deformation; the oblate-
octupole case has not been dealt with in Ref. [5]. We an-

alyze the case of zero temperature which is good for nu-

clei. For metallic clusters finite temperature should be
considered [10];however, our interest is focused on shell

structure whose character is unaff'ected by temperature
except for the amplitude. Only axially symmetrical terms
are taken into account which brings down to 2 the num-

ber of degrees of freedom of the motion.
The single particle motion is considered in the potential

r

V(p, z) =
2

2+ z +~ 2z 3zp2 3 2'
P

b Jpz+zz

where p =x +y in Cartesian coordinates z,y, z. We
recognize an axially symmetric harmonic oscillator with
frequencies co„=a~ =bc@, with an octupole term, written
in the cylindrical coordinates (p, z, p). For the results
presented the parameters are chosen such that the levels
are 15 MeV apart for b =1 and li, =0 which corresponds
to a three-dimensional isotropic harmonic oscillator. For
X =0 and b & 1 (b & 1) we have the mean field potential
of a prolate (oblate) nucleus. Note that choosing a suit-
able set of diff'erent parameters, we deal with a metallic
cluster. The octupole term (A, &0) is proportional to
r Y30 with Y30 being the third order spherical harmonic
andr =p +z .

If )k) &A,, we are dealing with a proper bound state
problem. Here k, is defined to be the value for which the
potential no longer binds; for )1L, ) & A., the potential tends
to —cx along one or two directions. The direction and
the value of A,, depend on the quadrupole deformation b.
For prolate nuclei (b & 1), A,, =l/2b and the potential
opens its valley along the positive (negative) z direction
for negative (positive) A, . For oblate nuclei (0.5 ~ b & 1)
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FIG. l. Surfaces of' section at p 0 for b =2, A,
=

3 A,, (left) and b =0.58, A. = 3 A,, {right). In the left part stability islands are
clearly discernible for ~inding numbers 2:5, l:2, and 4:7. The right part is dominated by chaotic motion; some of the remaining is-
lands are indicated by ellipses.
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FIG. 2. Lyapunov exponent as a fu|tetion of A/A, The lower
solid line is for b I, the upper solid line for b 0.58, and the
dashed line for b 0.5. The values for b 2 are too small to ap-
pear on the diagram.

the other possible direction which is along the line

p=sgn(A, )az, with a=0.4, is of increasing importance.
At the value b =0.58 valleys along the two directions
p=0 and p ~0.4z open simultaneously for k„= 1.5 while

for a still smaller value of b, say for b =0 5, the .valley

along the direction p=0.4z opens for X, = 1.64 while the
one along the z axis now opens for a larger value of k.
(Analytic expressions for i,, and the direction a as func-
tions of b exist but are of little interest. ) Chaotic motion
is expected to become more pronounced the nearer the
parameters for a bounded motion are to those for an un-

bounded motion. Thus increasing chaotic behavior is ex-

pected when A, approaches A, Furthermore, since the

geometry of the potential for k It,,(b) also depends on b,
the chance of an escape for k) k, also depends on b.
This chance reIIects upon the amount of chaos, i.e., the

Lyapunov exponent, for the bounded motion prevailing
for values A, (X,(b). In this way the amount of chaos is

expected to be greatest for b=0.58 where two valleys

can serve as an escape route if A. =X, In addition, at
b=2 (superdeformed prolate nucleus) less chaos is ex-

pected than at b 0.5 (superdeformed oblate nucleus),
since the opening of the phase space happens through a
small bottle neck in the former case thus considerably re-

ducing the chance for escape, while the chance for escape
at b=0.5 is enhanced as the phase space opens more

widely.
The results of the numerical integration of the equa-

tions of motion confirm all the expectations. Axial sym-

metry yields the constant of motion p& p p of the three-
dimensional motion. %e present results only for p& 0.
A nonzero value of the z component of the angular
momentum does not produce new insights. Since the po-

tential scales as V(yr) =y V(r) it suIItces to investigate

one energy only [I I].
For the superdeformed prolate nucleus (b 2) there is

hardly any chaotic behavior discernible in the classical
motion for all k (A, When looking at surfaces of sec-

tion which we have taken at p=0 (recall p~ 0) in the

(p, -z) plane there is some scattering of the dots when A, is

very close to k„but the Lyapunov exponent is virtually

zero. There is, however, a proliferation of periodic orbits,
an aspect important below when we discuss quantum
mechanics. This is illustrated in Fig. 1(a) where surfaces
of section are displayed for b 2 and A,

For decreasing values of b the motion becomes increas-

ingly chaotic up to the maximally chaotic case at b

=0.58. Surfaces of section are illustrated in Fig. 1(b)
for A,

=
3 X,. Note that for b=0.58, no structure would

be discernible for X 3 X, %'e have compared results for

X=PE,(b) with P 0.2, 0.4, 0.6, and 0.9. The trend is

uniform in that the Lyapunov exponent show's the, behav-

ior as indicated in Fig. 2. The hgure presents values

referring to chaotic orbits and avoids initial conditions

within regions of stability. Such regions of stability grad-

ually disappear when X, approaches X,, if b ~ l.
%e find the expected proliferation of periodic orbits.

However, we refrain from discussing them in great detail

as the aspect of the possible retrieval [12] of periodic or-

bits from the quantum mechanical spectrum is discussed

in a forthcoming paper.
The quantum mechanical treatment is straightforward
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in principle. In the spirit of previous work [13] we use for
the full problem which is of the form Hg+X, H~ a repre-
sentation where Hp is diagonal. The basis chosen is re-

ferred [7] to as the basis using the asymptotic quantum
numbers n&, n„and A, where n~ =n++n —.For a fixed
value of A this leaves two quantum numbers (reflecting
the 2 degrees of freedom) to enumerate the rows and

columns of the matrix problem. For A=O the diagonal
entries of Ho are thus E„,„=hru[n~+ I+(n, + t )/b].
The matrix elements of H~ are obtained from those
of z-(a, +a, ) and p —(A+A )+A -A +A+A-
+A j~.At ), where, in terms of the usual boson operators

a, ,~, A ~ (a, Via~)/J2. The eff'ect of truncation was

tested by looking at the variation of the lower end of the
spectrum when the dimension of the matrices was in-

creased. There is certainly a dependence on b and X,. For
X ~ 0.9k, and 0.5 ~ b ~ 2 the variation was less than 1/0

for the first 300 levels obtained from 1600x1600 dimen-

sional matrices.
For demonstration we display parts of the spectra in

Fig. 3. It is obvious, and in fact quantitatively confirmed
in Fig. 4 where the relevant statistical analyses are
shown, that the quantum mechanical results are in line

with the classical cases. The level repulsions in the super-

deformed prolate case are very weak thus giving rise to a
nearest neighbor distribution (NND) which appears
nearer to an integrable case than to the typical Wigner
distribution. Of physical interest are the pronounced new

shell structures that emerge near to A, =O.SA,, and k
=0.65K,, in the superdeformed prolate case. This pattern
is directly related to the periodic orbits indicated in Fig.
1 (a) as will be discussed in detail in a forthcoming paper.
Since we have left out terms like spin-orbit coupling and
I we cannot claim that such structures arise exactly
where we find them. However, the essential point is the
fact that such structures will always emerge. Since the
situation is so close to integrability for all A, (X„ the level

repulsions are always weak; as a consequence, shell struc-
tures are bound to emerge for some values of the parame-
ters. We note that the consequent periodicity in the spec-
trum will produce sharp lines in the Fourier transform of
the level density [14], a reflection of the many periodic
orbits [15] found in the corresponding classical case as
was mentioned above.

These findings nicely contrast with the oblate case
where the spectrum and in particular the NND all have
signatures of chaos. For suIIiciently large values of the
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FlG. 3. A section of energy levels as a function of A/k, for
b 2 (top) and b 0.5 (bottom). For greater clarity volume
conservation is not taken into account.

f'IG. 4. Nearest neighbor distribution of the spectra shown
in Fig. 3 for A./)i, , 0.5 as a function of the unfolded energy.
For the top (b 2) 200 levels and for the bottom (b =0.5) 600
levels have been used.
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octupole strength A, all periodic structure is destroyed and
there is no scope for new magic numbers. We mention
that the NND best approaches the Wigner surmise for
b =0.58.

In summary, we have found for a problem typical for
nuclear physics and for metallic clusters that chaotic be-
havior should be expected in principle even for the single
particle motion if deformations of higher order than

quadrupole are taken into account. Moreover, for the
prolate and in particular the superdeformed prolate case,
there is a remarkable stability against chaos when octo-
pole deformation is switched on. This result is in agree-
ment with a prediction of an octupole instability of super-
and hyperdeformed nuclei [16], based on realistic calcu-
lations. We conjecture that this pattern prevails also
when axial symmetry is broken, i.e., when terms of the
form Y3, m&0 are taken into account. To what extent
stability against chaos can be associated with stability in

general terms —it is a well known fact that there are
more prolate than oblate nuclei —is subject to further in-

vestigation. In the spirit of Ref. [5] we should expect
prolate nuclei to behave rather elastically in contrast to
oblate nuclei where more dissipative behavior is anticipat-
ed. We may speculate that the absence of shell structure
for the oblate-octupole case could prevent the existence of
stable oblate-octupole deformed clusters.
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