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Core Instability and Spatiotemporal Intermittency of Spiral Waves
in Oscillatory Media

Igor Aranson, i Lorenz Kramer, 2 and Andreas Webers
'Department of Physics, Bar Ilan-University, Ramat Gan, M900, Israel

Physikalisches Institut der Universitat Bayreuth, 954/0 Bayreuth, Germany
(Received 3 September 1993)

We show that in a parameter range which is important in particular for optical instabilities spiral
waves in the complex (generalized) Ginzburg-Landau equation are unstable with respect to a core
instability which leads to spontaneous acceleration of the spiral. Depending on the parameters the
system settles down in at least four qualitatively difFerent spatiotemporally chaotic states.

PACS numbers: 05.45.+b, 47.20.-k

A(r, 8) = F(r) exp(i[iot + 8 + g(r)]), (2)

where (r, 8) are polar coordinates. The real functions F
and g have the following asymptotic behavior: F(r) —+

gl —skz g'(r) ~ k for r —+ oo and F(r) r, @'(r) r
for r ~ 0. The wave number k of the asymptotic waves
emitted by the spiral is determined uniquely for given

e, c. In general k has to be determined numerically [8].

The complex Ginzburg-Landau equation (CGLE),

B,A = A + (e+ i)AA —(1+ ic) ~A~'A,

has become very popular in recent years (note that in
the more usual scaling one has length rescaled by +c
and e = 1/[b[). It describes the slowly varying amplitude
and phase of a mode which bifurcates supercritically via
an oscillatory instability (Hopf bifurcation) from a homo-
geneous state [1]. Examples of such media are chemical
oscillations and anisotropic systems sustaining (nonlin-
ear) traveling waves, e.g. , convection instabilities in ne-
matic liquid crystals (for general reviews see [2)). Trans-
versely extended lasers or passive nonlinear media are
other systems where the oscillatory instability occurs [3].
In this case systematic derivation of the CGLE from the
Maxwell-Bloch equations in the "good cavity limit" for
positive detuning between the cavity resonance and the
atomic line [4—6] leads to very small values of e 10 s—
10-' [6]

Equation (1) has plane-wave solutions A
v'1 —ekz exp(i[iot+k r]j with ~ = —k~ —c(1—skz) and
ks ( 1/e. They are stable within a narrower k band as
long as s+ c ) 0 holds. For k g 0 one has first the onset
of the convective Eckhaus instability and subsequently
absolute instability [7).

More general solutions involve topological point defects
in 2D (and line defects in 3D) which correspond to sim-

ple zeros of A. One has topological quantum numbers kl
related to the phase change of k2x when going around
the defect. When c P 1/e the defects are usually sources
of spiral waves whose constant phase lines behave like an
Archimedean spiral, except in the immediate neighbor-
hood of the core. The stationary one-armed (or singly
charged) isolated spiral solution of Eq. (1) is of the form

For e g 0 the rigidly rotating solutions of Eq. (1) can
be obtained by a similarity transformation [7,8] from the
case e = 0 with a transformed value of c given by c =
(c+ e)(1 —sc).

For e = 0 one has a type of Galilean invariance (see
[9] for the 1D case) and then in addition to the station-
ary spiral there exists a family of spirals moving with
arbitrary constant velocity v

A(r, t) = F(r') exp
~

i ai't + 8+ Q(r') — ~, (3)
r'vl

2 )
where r' = r+ vt, io' = ur + v /4, and the functions F, g
are those of Eq. (2) (this invariance holds for any sta-
tionary solution). For e g 0 the difFusion term sb,A
destroys the family and in fact leads to acceleration of
the spiral proportional to ev. The usual (tacit) assump-
tion is that the stationary spiral, which survives the per-
turbation, is in fact stable [6]. We show here that this
is not the case, and that stable spirals exist only above
some critical value e, . Below e, the stationary spirals
are unstable with respect to spontaneous acceleration.
To demonstrate these statements we adopted an analytic
method and performed direct numerical simulations.

First we consider the limit 0 ( e (( 1. For small
values of e one may expect the solution (3) to be slightly
perturbed and have a slowly varying velocity v which

obeys an equation of motion of the form Btv+ eKv = 0.
Because of isotropy the elements of the tensor K must
satisfy Kit ——Kzz and Ktz ———Kzt, so the relation can
also be written as

~t&+ &&U = 0~

where ~ = u„+ie~and ~ = Kqq —iKqq. Since in general
the friction constant e is complex, the spiral core moves

on a (logarithmic) spiral trajectory.
Perturbed solutions with slowly varying velocity can

be written as

A(r, t) = [F(r') + W] exp
I
i id't+ 8+ @(r')—r r'. v )

2 .

Separating real and imaginary parts of TV, representing
it in the form of a Fourier series
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and assuming ~v~, e (( 1, one obtains from Eq. (1) a set
of decoupled equations for each Fourier component. The
acceleration appears only in the equations for n = +1.
We need only n = 1 which is given by (after omitting
primes on r)
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(7)

where 6 = 6„—r 2 —b,„F/F,b,„=8~+ r 18„;primes
now denote difFerentiation with respect to r. Actually the
right hand side (r.h.s.) of Eqs. (7) diverges due to the
acceleration term rBq8 This m. eans that the ansatz (5)
with ~W~ small cannot be valid arbitrarily far away from
the core. In fact the region of validity is large for small
acceleration. In the outer region rB&v » 1 the structure
of the field A must be matched with the field described by
(7), but it is not necessary to actually perform the match-
ing in order to determine the acceleration. It suffices to
adjust the value of the acceleration in such a (unique)
way that the exponential growth, which is characteristic
for generic solutions of Eqs. (7) with regular behavior at
r = 0, is suppressed, leading to more slow, in comparison
to the exponential, powerlike growth. Since the r.h.s. of
Eq. (7) is linear in v and Bq8 one can proceed as follows
(for more details see Ref. [10]).

The solutions of Eq. (7) are for large r in general
dominated by two exponents with a positive real part,
which are complex conjugated in the "oscillatory range"
(c+ e)/(I —cs) ( ce = 1.18 (below curve OR in Fig.
1) and real otherwise ("monotonic range"). One com-
putes numerically the (complex) prefactors C1„,Cq„of
the two diverging exponents of an inhomogeneous solu-
tion for the choice 6 = 1, Bq6 = 0 and similarly the con-
stants Cq, C2 for the choice 8 = 0, 8q8 = 1 with the
conditions Aq(0) = Bq(0) = 0. Moreover, one calculates
the prefactors Cq, 2 of a homogeneous solution of Eq. (7)
which is regular at r = 0. Actually this regularity con-
dition allows for two linearly independent homogeneous
solutions, but one of them remairm bounded for r ~ oo
and does not contribute to Cq 2 (see Ref. [10]).To obtain
the solution of Eq. (7) with balanced exponential growth
one has to adjust 8, 8g6, i e , the inho. m. ogeneities in Eq.
(7), and the prefactor g of the homogeneous solution such
that the relation

FIG. 1. Stability limits of spiral wave. e, is the core sta-
bility limit (unstable to the left), below EI is the Eckhaus
unstable region, ST designates the transition line to "strong"
turbulence, and below OR is the oscillatory range. The lines
EI and OR are obtained by the linear stability analysis of
outcoming waves. The line ST is obtained from the numerical
solution of quasi-1D CGLE (see text below). Inset: Real and
imaginary parts of e versus c. The lines represent the analyt-
ical results; the symbols are obtained from 2D simulations for
e' = 0.025.

is satisfied. Eliminating ( we obtain the relation (4) with
EK = (Cq„/Cq —Cz„/C2)/(C1~/Cq —C2~/C2). In this
way we find that for s ~ 0 the real part of z is always
negative. The results for m from the asymptotic analysis
are in reasonable agreement with direct numerical simu-
lations of the CGLE (see Fig. 1, inset). In the monotonic
range the analysis is complicated by the fact that the
exponents may be very difFerent.

The acceleration instability of the spiral core has a
well-known counterpart in excitable media, where the
spiral "tip" can perform a quasiperiodic motion lead-
ing to meandering [11]. The main difference between
the two cases is simple: In excitable media the nonlinear
corrections to Eq. (4), which may be written in the form
Bq6+ sr8 = f(~6~~)6 with f(0) = 0, has typically a neg-
ative real part and provides saturation of the instability,
whereas in the CGLE the sign of Ref(~6~2) is opposite
and does not lead to saturation according to the simula-
tions. Thus we have found an alternative version of the
meandering instability [11]. The scenario appears to be
generic and cannot be destroyed by small perturbations
of the CGLE.

Now going to larger e one finds that Rex increases with
e and finally changes sign at a value e, . The result is
shown in Fig. 1. It is obtained from extensive numerical
simulations of the CGLE on a GRAY 2 YMP supercom-
puter. We measured systematically Rem above and below
the curve. The zero of Res, was then determined by linear
interpolation.
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We note that the acceleration instability can be in-
terpreted as the destabilization of a localized core mode
similar to the situation of the standing hole solution in
the 1D CGLE [12,13]. The spatial decay rate ~ of the
mode is related to the time exponent eK via the disper-
sion relation for plane waves.

The instability of the spiral core persists in the limit of
the "defocusing" nonlinear Schrodinger equation, which
corresponds to c ~ oo, s —+ 0 and falls into the mono-
tonic range. In this limit Q —+ 0. The acceleration can
in principle be found from the solvability conditions by
projecting Eq. (1) onto the translation mode of the ad-
joint linearized operator. However, in that limit the inte-

grals in the solvability condition diverge logarithmically.
Introducing an appropriate cutoff one easily sees that z
becomes real, but its actual value is difficult to determine.
Thus, in this limit the trajectory of the accelerating core
is just a straight line.

Our result can also explain complex motion of the
spiral core observed recently in the presence of a local-
ized inhomogeneity [14] or with obstacles [15]. Although
this motion was obtained in the stable range Rer ) 0
(s & s,), the external forces created by the inhomogene-

ity can excite the weakly damped core mode. Then the
equation of motion for the spiral core will be of the form
t9q8+ swan = G(r). The trajectory of this equation may
perform complex motion even for very simple forms of
the force term G(r). In fact, we found meandering-type
motion for purely radial G([r[) [14].

Let us now discuss the typical behavior of the system
when small random initial conditions are applied. Be-
cause of the extended parameter space and large CPU
time requirements for reliable simulations our investiga-
tions should be considered as yet preliminary. Clearly
one expects that for s (s, a state with persistent defects
should be typically turbulent (spatiotemporal chaos). In
the monotonic range (Fig. 1, above curve OR), this tur-
bulence is characterized by fast motion of the defects
(these defects are not really spirals because the asymp-
totic radiation field is not developed) and collisions,
which often do not result in annihilation, in contrast to
the case of the usual defect-mediated turbulence [16,17],
where the waves emitted by the spiral are unstable. In
Fig. 2, the number n of defects as a function of time is
shown for a fairly large system (150 x 150). Apart from
the rapid fluctuations due to creation and annihilation
there is an extremely slow decrease of n (due to CPU
time limitations we have not continued the simulations).
The (quasi)stationary distribution is well described by

p(n) exp[ —(n —n)2 jn], where n is the average number
of defects. The formula follows in the limit n ~ oo f'rom

treating defect pairs as statistical independent entities
[17]. Note that this assumption is strictly vahd only for
the full system. Otherwise the statistics is influenced by
single defects entering or leaving the subsystem. When
these processes dominate the exponent acquires a factor
&. Actually, when crossing s, in the monotonic range the
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FIG. 2. The number of defects versus time for four di8'erent

values of c and s = 0.025. Parameters of the simulations are
as fo11ows: the domain of integration 150 x 150, the number
of jF'ourier harmonics 256 x 256, the time step 0.02.

disordered state appears to persist (or is at least very long
lived). Thus the single-spiral instability has presumably
hmited relevance for the collective behavior.

In the oscillatory range (Fig. 1, below curve OR) the
behavior is drastically different. In the beginning of
the process one has the formation of many spirals and
the subsequent; development of spontaneous symmetry
breaking resulting in one spiral becoming dominant at
least in not too large cells similar to the case s & s,
(see Ref. [18] and Fig. 2). However, now the dominant

spiral is unstable with respect to acceleration, resulting
in continued motion of the core restricted by the shocks.
Additional spirals are created only rarely. In very large

systems one might expect a "dynamic vortex glass" [19].
When the Eckhaus instability of emitted plane waves

sets in below curve EI of Fig. 1 the perturbations pro-
duced by the accelerating core of the dominant spiral are
amplified away from the core due to the convective char-

acter of the instability. Eventually some critical level is

exceeded, the state loses stability, and many new defects
are created throughout the cell. Then the process re-

peats (Figs. 2 and 3). Such phenomena are very similar

to spatiotemporal intermittency of holes observed in the
1D CGLE [13,20] and might be called defect mediated in;-
termittency In a very la. rge cell one expects to have such
processes developing independently in different places of
the cell, so one has persistent turbulent bursts (or spots)
on the background of growing spirals. For s ) s, the
intermittency vanishes and then the curve EI plays no
direct role.

Below curve ST in Fig. 1 the "strong" turbulence char-
acteristic for the intermittent bursts becomes persistent

(s ( s,). This turbulence is characterized by strong vari-

ations of the amplitude A everywhere in the domain. The
defects play a passive role because the asymptotic waves
are not emitted by the cores. This regime is similar to
usual defect-mediated turbulence [16,17]. The curve ST
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FIG. 3. Snapshots of [A(z, y)! in the intermittency range
for four consecutive times [c = -0.5, s = 0.025; black:
)A(x, y)! = 0; white: )A(x, y)) = 1). The times correspond-
ing to (a), (b), (c), and (d) are indicated in Fig. 2 .

lies slightly above the limit of absolute instability (see
Ref. [7]) obtained from linear perturbation analysis of the
selected wave number k. This analysis gives for s -+ 0
the value c = —1.2. Whereas spirals are indeed linearly
stable up to the absolute stability limit their domain of
attraction appears to become small below the curve ST.
The curve was actually determined by simulating Eq. (1)
with the restricted angular dependence (2) and boundary
conditions A(0) = 0, B„A(L)= 0, L » I, which is efFec-

tively a 1D problem. Whereas above ST random initial

conditions led to a spiral, below ST a defect with the core
surrounded by a shock structure was usually obtained for

t ~ oo. This stationary solution exists also above ST and

is reminiscent of defects trapped inside shock structures
in 2D simulations after symmetry breaking. The curve

ST determined in this manner is consistent with 2D sirn-

ulations.
The case of negative difFusion (e & 0, !s] « I)

is important especially for lasers with negative detun-

ing [4,21]. Then higher-order corrections to the difFu-

sion (fourth derivative) have to be included to stabilize
the short-wave instability. Our analysis shows that for

)s] « 1 the meandering is not saturated either. Presum-

ably one has the acceleration instability of optical vor-

tices in a wide parameter range of Mmcwell-Bloch-type

equations where the CGLE is invalid. Experiments with
lasers (or passive systems) in the large Fresnel number

range and initially a small number of vortices would be
desirable.
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