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We show the existence of a nonadiabatic geometric phase, i.e., an Aharonov-Anandan (AA) phase,
in the Aharonov-Casher (AC) topological interference effect in one-dimensional mesoscopic rings.
We find the AC phase is the phase accumulated by the spin wave function during a cyclic evolution,
and show it is the sum of a geometric AA phase and a dynamical phase. In the adiabatic limit,
the AA phase becomes the spin-orbit Berry phase introduced by Aronov and Lyanda-Geller. By
solving exactly the model of a quasi-one-dimensional ring formed by the 2DEG on a semiconductor
heterostructure, we discuss the observability of the AA phase in the AC effect.
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A quantum holonomy phenomenon, known as the ge-
ometric phase, has received a lot of interest for years [1].
Berry [2] first discovered that there exists the geomet-
ric phase in adiabatic cyclic evolution. This adiabatic
geometric phase, referred to as the Berry phase, can be
interpreted as a holonomy associated with the parallel
transport around a circuit in a parameter space [3]. In
a fundamental generalization of Berry’s idea, Aharonov
and Anandan (AA) removed the adiabatic restriction
and studied the geometric phase for any cyclic evolution
[4]. Suppose a normalized state |1 (t)) evolves according
to the Schrodinger equation ih(d/dt)|y(t)) = H(t)|¥(t))
such that |9(T)) = e**|%(0)). Then |¢(t)) undergoes a
cyclic evolution in a time interval [0, T]. By removing
the dynamical part from the phase A\, AA defined their
nonadiabatic geometric phase for the cyclic evolution as
v = A+ A1 [T ((8)|H(8)|%(t))dt. They found 7 takes
the form of v = ff(zﬂ]z’(d/dt)lz[z)dt where [1)) is given by
[D(t)) = e ®|y(t)) with f(T) — f(0) = A such that
[%(T)) = |¥(0)). The AA phase v can be interpreted as
a holonomy associated with the parallel transport around
the circuit C defined by |#) in the projective Hilbert space
P. In case H(t) = H[R(t)] is a function of a set of pa-
rameters R, which vary slowly around a circuit I' in the
parameter space, |1(t)) becomes an instantaneous eigen-
state |[n[R(t)]) of H[R(t)), and the AA phase tends to the

Berry phase i §.(n(R)|Vr|n(R)) - dR. The observation
of the AA phase has already been done in optical and
NMR experiments [5]. The well known Aharonov-Bohm
(AB) effect [6] can be interpreted as a special realization
of the AA phase [4]. This is a generalization of the result
that the AB phase can be regarded as a special case of
the Berry phase [2] since the former has its nonadiabatic
origin [4].

There are many observable effects of the geometric
phase including the AB phase. In mesoscopic systems,
several manifestations of the AB effect have been pre-
dicted and verified [7-10]. Similar manifestations of the
Berry phase and AA phase are currently under investi-
gation. The persistent currents from the Berry phase in
textured mesoscopic rings were studied by Loss, Gold-
bart, and Balatsky [11]. They also first predicted the
effect that the Berry phase affects the conductivity [11].
In a further study, Stern demonstrated that the Berry
phase affects the conductivity of the rings in a way sim-
ilar to the AB effect, and a time-dependent Berry phase
induces a motive force [12]. The AA phase in textured
rings and its relation to the persistent currents were dis-
cussed in Ref. [13].

Recently, it has been recognized that spin-orbit (SO)
interaction leads to a novel topological interference effect,
which is an electromagnetic dual of the AB effect and
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called the Aharonov-Casher (AC) effect [14]. The observ-
ability of the AC effect in mesoscopic systems has been
discussed by several authors [15-17]. Using the transfer
matrix method, Meir, Gefen, and Entin-Wohlman [15]
showed for the first time that SO interaction in one-
dimensional disordered rings induces an effective spin-
dependent magnetic flux, which leads to universal SO re-
duction factors of the harmonics. Mathur and Stone [16]
then investigated the persistent-current paramagnetism
and the conductance oscillations due to the effective mag-
netic flux, and pointed out that the effects of SO inter-
action are manifestations of the AC effect. By use of the
same method as in Ref. [15], Balatsky and Altshuler [17)
considered the AC effect in external electric field, and
studied the persistent currents produced by SO interac-
tion via the AC effect. In these works, the effective AC
flux was obtained and several of its manifestations were
predicted. However, as the spin motion of the electron
has not been analyzed in connection with the quantum
phase effect in cyclic evolution, the contribution of the
geometric phase in the effect of SO interaction has not
been specified yet. On the other hand, in a slightly dif-
ferent but closely related context, Aronov and Lyanda-
Geller [18] considered the spin motion of the electron in
conducting rings, and demonstrated that SO interaction
results in a spin-orbit Berry phase in the adiabatic limit.
As is well known, in the presence of SO interaction there
is a momentum-dependent effective magnetic field cou-
pled to the electron spin. If the momentum traverses a
circuit in momentum space (the parameter space for the
spin Hamiltonian), and if the spin orientation keeps in
the direction of the effective magnetic field, the spin state
acquires a Berry phase in its adiabatic cyclic evolution.
This Berry phase is just the SO Berry phase.

The purpose of this paper is to show the existence of
a nonadiabatic geometric phase, i.e., an AA phase, in
the AC effect in mesoscopic rings. We first derive a spin
cyclic evolution, which is governed by SO interaction and
invokes no adiabatic approximation. Then, with the help
of this cyclic evolution, we diagonalize the Hamiltonian
in spin space. It is seen that the spin cyclic evolution
determines both the AC phase and local spin orienta-
tion of the eigenstate of the Hamiltonian. The AC phase
is found to be the phase acquired by the spin state in
its cyclic evolution. In particular, we show the AC phase
consists of a geometric AA phase and a dynamical phase.
This implies that in the same sense as the AB effect is a
quantum phase effect in an orbital cyclic evolution, the
AC effect is a quantum phase effect in a spin cyclic evo-
lution. In the adiabatic limit, the AA phase becomes the
SO Berry phase introduced in Ref. [18]. The connection
between the results in Refs. [15] and [18] is therefore es-
tablished. As an illustrative example, we find the exact
solution for the system proposed in Ref. [18] by making
use of the invariant theory, which is suitable for the study
of the geometric phase in cyclic evolution [19]. The AA
phase and dynamical phase, which are the two parts of
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the AC phase for the system, are derived. The condition
for the validity of the adiabatic approximation is then
discussed. It turns out that the AA phase is observable
in the experiments proposed for measuring the AC effect.

In the presence of SO interaction, the Anderson Hamil-
tonian for electrons confined to a one-dimensional ring of
N sites reads

H=Y aClCiu+ Y ViCl1,(S)uCio +He,, (1)
7 lpp

where S; is a 2 x 2 SU(2) matrix in spin space. For a ring
of radius a,

ea 1+1
S; = Pexp zma-/l dpey xE ), (2)

where ¢ is the angular coordinate of the ring, ey is the
corresponding unit vector, and P is the path ordering op-
erator. In fact, the Hamiltonian (1) with S; given by (2)
is the discrete version of the single electron Hamiltonian

2
p eh
- — _o-E ,
e eV(r) + 4m§cza X p
where E = —VV is the electric field which leads to SO
interaction.
Consider a Schrédinger-type equation

.0 ea

156V (9) = -z X Bl@) - ov(9), ®3)

4m.c?

which describes the evolution of the spin state ¥ of the
electron during its hopping. In fact, S; in Eq. (2) is the
discretized version of the evolution operator for Eq. (3).
A spin cyclic evolution is defined to satisfy the condition
that when the electron traverses the whole ring once, the
initial and final spin wave functions only differ in phase
factors. Following Ref. [4] and introducing ¥ (@), we solve
the cyclic evolution formally as

P () = il +8u @) m) (4), (4)
with the cyclic condition ¥®)(2r) = $%®)(0), and the
phases

¢ -
(@) = [ 9 ()a ),
(5)

ea ~
.oth#)
- 5€, X E -y dp,

é .
5M(¢)=/0 ¢(M)f

where u = +;
a
1;(4_) _ CcoSs '2—
€' sin =
2

and
- —e~#Bsin 2
¢(—) = a 2
S —
cos 3
are spin coherent states. « and (3 satisfy the auxiliary

equation
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6%,,(4,) = [ 2::1 €4 X E] x n(¢), (6)

with n = (cosBsina,sin Bsina,cosa). The AA phase
associated with the cyclic evolution is 7, (27) while the
dynamical phase is 6,(27) [4]. From the above results,
Sy can be expressed as S = 3, $(*)(¢41)e Ao (1) ()
with p; = [6u(d141) + Vu(¢z+1)] = [6u(¢0) + ()] &
is the angular coordinate of the lth site.

Now we demonstrate that the spin cyclic evolution is
responsible for the AC effect by diagonalizing explicitly
the Hamiltonian in spin space. We first introduce a uni-
tary transformation

N
O .
U= Hexp [23[0,}‘“(01 sin B — o2 cos ﬁz),,,,C’z,,] , (1)
=1

where a; = a(¢;) and 8 = B(¢) are given by Eq. (6).
The corresponding transformatlon property of the elec-
tron creation operators is UC U1 [C‘\ Ct W) (4r),

which leads to UC’l“(aa)M,Cz,,UT =n(¢;)- C,“aupCz,, So
U operator transforms the local spin orientation at lth
site from z axis to n(¢;). From the above results, we
obtain that H is transformed into Hy = Ut HU, which is
diagonal in spin space:

Hy=Y_ aC},Ciu+ViCl,,,e*MCp+He.  (8)
lp

In the derivation, it is readily seen that the cyclic condi-
tion is necessary for the fulfillment of the periodic bound-
ary condition for the ring. The phase factor e*** in the
hopping term of Hy indicates that the ring is threaded
by a spin-dependent magnetic flux which leads to the AC
effect. pX = p Y ; A = vu(27) + 6,(2) is the AC phase.
For an eigenstate of H, the local spin orientation at Ith
site is un(¢;). It is straightforward to verify that the AA

phase
=_k :
Ww(2m) = 2 //S‘S=C n-ds ©

is ——% of the solid angle subtended by the circuit traced
on a sphere by the spin orientation along the ring. In the
adiabatic limit, the spin orientation approaches the direc-
tion of the local momentum-dependent effective magnetic
field, i.e., n(¢;) || es(¢:) x E(¢:), and the AA phase be-
comes the SO Berry phase introduced in Ref. [18]. We
would like to emphasize here that, by introducing ex-
plicitly the spin cyclic evolution (4) and expressing S; in
terms of the evolution, we demonstrate the AC phase is
actually the phase acquired by the spin state during its
cyclic evolution. Consequently, the geometric AA phase
in the AC effect is clearly identified without adiabatic
approximation.

In the following, we discuss the observability of the AA
phase in the experiments proposed for measuring the AC
effect. Consider a quasi-one-dimensional ring of radius a
formed by the two-dimensional electron gas (2DEG) on

a semiconductor heterostructure. If the normal to the
2DEG plane in a A3Bj5 crystal is directed along 2’||(111),
the Hamiltonian is

(10)

where m is the effective mass, b; + bae is the SO coeffi-
cient, p. L 2/, and the Zeeman term is absent. This
Hamiltonian was first proposed in Ref. [18] with the
eigenvalue problem unsolved. Here we solve this model
exactly to exhibit explicitly the relation of the spin evo-
lution to the AC effect. In cylindrical coordinates, the
Hamiltonian (10) can be written as

2
H= ;’—; + Fi(by + ba€)(o X P,

h? 0 ; ’
H= 53 [—za—¢ + mak(cos ¢oy + sin ¢02)]
mh2k?
_ 11
2’ -

with & = b; + bge. The Schrédinger-type equation corre-
sponding to Eq. (3) now takes the form of

¢ H,, (12)

3¢

with H, = max(cos ¢o1 + sin ¢o2). It is easy to see that

there is an invariant
I, = cos ¢ sin xo1 + sin @ sin xo2 + cos xo3,

(13)

satisfying zyI + [I,,Hy] = 0 and I,(27) = I,(0),
with tany = —2mak. The eigenvalue equation of I, is
Ip®W = pp¥) | with

X

12;(+) _ COs 5
€ sin X
2

—e—ibgin X
~ [6 sm2

and

¢(—) — X
COos 5

From the expectation value of o as a function of ¢, it is
readily seen that x is the angle by which the spin orien-
tation deviates from the z axis, i.e., the azimuthal angle
of n in Eq. (6). The exact solution of Eq. (12) is found
to be

Y® ($) = exp (z /0 ’ dp [—‘5‘(1 — cosx)

(14)
—pmak sin x] )1/3"" (9),

which satisfies the cyclic condition ¥ (2x) = #)(0).
The AA phase and dynamical phase associated with the
cyclic evolution are

/ BN ()PP (p) = —pn(l —cosx)  (15)
0

and
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27
—/ YW H oW dyp = —2urmarsinx, (16)
0

respectively [19]. From these results, we obtain the AC
phase ®, = —um(1 — cosx) — 2ummaksin x, and the so-
lution of the eigenvalue equation H¥,, = £,,¥p,:

T, = ein¢¢~,(u)/\/2_7r,
R 3,\* mh?x? 17
"”_Zma2<—57_r_)_ 2
where n is an integer.

It is interesting to notice that Hagen [20] has es-
tablished elegantly an equivalence between the AB and
AC effects for the relativistic spin—% particles in two-
dimensional space. For the AC effect, he showed that
if the particles are confined to a plane, then the cyclic
phase factor can be calculated exactly. We would like
to emphasize that in those cases discussed in Ref. [20],
not only the particles are relativistic, but also the electric
field can have only “in plane” components. However, in
our discussion, not only do we have the nonrelativistic
situation, but also the electric field is allowed to have
nonvanishing component perpendicular to the plane of
the ring. Especially in our solved example, the electric
field is perpendicular to the 2DEG plane. Here the AC
effect is in fact induced by SO interaction different from
that discussed in Ref. [20].

Now we turn to the adiabatic limit of the solution.
From Eq. (12), we see that the condition for the validity
of the adiabatic approximation is max > 1 which re-
quires that SO interaction be sufficiently strong. Under
this condition, we get x — /2, from which the SO Berry
phase —& fOZ"(l —cos §)dp = —um as well as the adia-
batic limit of other quantities can be obtained. As the
Zeeman term is absent in Hamiltonian (10), the SO Berry
phase here is identical to that calculated for wy; = 0 in
Ref. [18]. From the difference between the adiabatic and
nonadiabatic results, we find x is a quantity which char-
acterizes the nonadiabatic property of the exact solution.
For a InAs ring of radius a (m = 0.023m., the SO coef-
ficient A2k = 6 x 10719 eV cm [21]), we have max = (1.8
pm~1)a. Since a is of the order 1 um, we see that the rel-
ativistic nature of SO interaction makes it so weak that
a nonadiabatic treatment of the problem is necessary.

We conclude this paper with a few discussions.

(1) Similar to the case studied in Ref. [13], here the
cyclic condition is imposed on the spin evolution by re-
quiring that the wave function of the system satisfies the
spatial periodic boundary condition for the ring. This is
to say that in this paper the spin cyclic evolution appears
as a natural consequence of the ring geometry of the sys-
tem. Note that in Ref. [18] an adiabatic spin cyclic evo-
lution was obtained quasiclassically from a Hamiltonian
traversing adiabatically along a circuit in its parameter
space, i.e., the momentum space.

(2) In the derivation of the AC phase for a magnetic
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dipole diffracting around a charged line, it is assumed
that the neutrons are polarized along an axis parallel to
the line and only the dynamical phase contributes to the
AC phase [14]. As noted by Goldhaber [22], there is an
extra degree of freedom which deserves further attention.
That is the spin orientation of the particle as the spin
is a quantum operator with noncommuting components.
However, this has not been taken into account seriously.
In Ref. [17], the uncommutability of adjoining S; matri-
ces was neglected in the derivation of the AC phase and
consequently the AA phase therein was not obtained. In
the present paper, we made it clear that the rotation of
spin orientation results in a nonadiabatic geometric AA
phase in addition to the conventional dynamical phase.
In some mesoscopic systems, the electric field inside solids
can cause such rotation and the observation of the AA
phase is possible.

(3) It is interesting to notice that S; in Eq. (2) can

be expressed as giy19; ! with [g)]o, = w ), so that S is
essentially a pure gauge in the sense of SU(2) non-Abelian
gauge theory. This follows from the fact that the effective
SU(2) gauge field associated with S; has only one spatial
component.
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