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Rami5ed Polymerization in Dirty Media: A New Critical Phenomenon
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%'e simulate d =2 polymer growth by allowing for a branching probability b and an impurity concen-
tration c (0( b, c ( I). In the (b,c) space we find a critical line (locus of vanishing order parameter
and diverging correlation length) which separates infinite from finite growth regimes; in particular, a
nonzero critical value for b exists even for c =0.

PACS numbers: 61.41.+e, 05.40.+j, 64.60.Cn, 82.35.+t

Polymerization is an extremely important phenomenon
which, during the last decades, has been modeled and
studied in a variety of manners. The simplest, of course,
is the random walk. The first nontrivial complexity ar-
rives when the polymer is not allowed to cut itself, i.e. ,

the self avoidi-ng random walk [1,2]. In this case,
growth stops whenever the randomly chosen growth
direction leads onto an already occupied site. More real-
istic models have been introduced in which the growing
end tries to avoid occupied regions; in this category falls
the so-called kinetic growth model [3-5]. However, even

in these models unavoidably occurs the sterie hindrance
effect [5]; i.e., the growth necessarily stops because the
polymerization has occurred in a narrow "cul de sac."
This effect determines the nature of polydispersion (hence
of the viscoelastic properties [6]), the consequences being
particularly dramatic in two dimensions, in which case
the growth stops with probability 1. Nevertheless, the
statistical relevance of this hindrance effect has never

been focused in detail, as far as we know. In the present
Letter, we generalize the kinetic growth model by allow-

ing for branching (or ramification) of the polymer as well

as for impurities (see, for instance, [7,8] for relevant
features about branching). We show with the help of
simulation that the competition between hindrance (due
to both self-avoiding growth and impurities) and branch-

ing will bring up interesting phenomena associated with

a new kind of phase transition. This type of critical
phenomenon should be relevant in the discussion of real
ramified polymers [1,9]; the inclusion of impurities in the
model can be useful in the discussion of a variety of sub-

stances (e.g. , commercial polymer paints, in which the
color is obtained through addition of chemically inert pig-
ments). Also there is a general scientific interest in this
kind of problem. In a recent review paper, Derrida [10]
emphasizes the importance of studying branched poly-
mers in disordered media, especially because of the possi-
ble connections with other fundamental problems like

spin glasses, and expected diA'erences in behavior from
the simple linear polymer case. He says that "little is

known on this problem, even at the mean field level. "
The present model has allowed us to make some progress
in this complex problem.

This model can still be considered as belonging to the
general class of models displaying kinetic phase transi-
tions, such as Schlogl's model [11], although it differs
essentially from that one. %e are going to comment on
this subject.

Let us consider an L x L square lattice in the center of
which we start, at t =0, growing a polymer. The growth
direction is randomly chosen among the four possible first

neighbors. At t =I, the growing end might bifurcate
with probability b or remain linear with probability
(I —b). The succesive growth directions are, in all the
cases, randomly chosen among the available ones. The
process recursively goes on in a self avoiding-manner.
Successive bifurcations will of course generate a great
number of growth ends. At every time step t, each one of
those ends is sequentially visited (in a clockwiselike
manner following the sequence of births) and can bifur-
cate with probability b. For a particular growth end, bi-

furcation can effectively occur only if at least two first

neighbors are unoccupied. If only one first neighbor is

available, it necessarily grows in a linear manner. If no

first neighbor is available, that particular end stops grow-

ing. The process is continued as long as at least one end

keeps growing, or until at least one end touches the con-
tour of the L xL square lattice. The entire experiment is

then repeated N, „~&&I times; this constitutes the ensem-
ble over which we perform the averages (denoted by

))
We note N the number of occupied bonds (linking

first-neighboring sites), i.e., the number of connected
monorners; in a real polymer, Ã is proportional to its total
mass. If b=0, then N t If b=l, the.n N (2' —I. If
0 & b & 1, /V becomes a random variable satisfying
(N) ( [(I+b)' —I]/b; the equality holds for arbitrary r

if the self-avoiding restriction is either relaxed (i.e., ran-
dom walk branched polymerization) or inoperative (e.g. ,

on a Cayley tree, or on a d o d-dimensional Bravais
lattice). In the thermodynamic limit (L ~), (N) can,
in principle, either indefinitely grow with r (infinite
growth regime) or stop at a certain range of r (frnire

growth regime). In practice, once the growth has

stopped, a polymer will be called "infinite" if at least one
of its growing ends touched the L x L contour; otherwise,
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FIG. I. Polydispersion distribution law: (a) finite growth
phase (semi-log representation, L 1000 and N„r 106); (b)
on the critical line, l.e., for (b, (c),c) (log-log representation,
L 1000 and N,„~ 20000).

it will be called "finite. " We denote by P the fraction
of polymers that are infinite, and by PN(N) the distribu-
tion law of N, corresponding to finite polymers.

In addition to the "mass, " it is interesting also to mea-
sure the (linear) size s of the polymer. This was done as
follows. Once a particular experiment stops growing (ei-
ther because it touched the L x L contour or because ster-
ic hindrance stopped all the growing ends), we deter-
mined the smallest rectangle (parallel to the L x L
square) and denoted by s, and sr the lengths of its two

sides. We define s—=js,s„(this choice preserves the
area) and denote by P, (s) the distribution law associated
with finite polymers; the mean size g—=(s) plays an impor-
tant role, namely, that of the correlation length in stan-
dard phase transitions. The fractal dimension df of the
branched polymer is defined through (N) a: g I.df

To the best of our knowledge, branched polymerization
in the presence of impurities has never been studied. To
do this, we shall extend the model we have just intro-
duced. More precisely, let us assume that, when growth
starts, a concentration c C [0, 1] of site impurities has al-
ready been randomly frozen in the lattice. The growing
branched polymer' must now avoid, besides itself, these
obstacles. The inliuence of impurities on the quantities of
interest (e.g., P and () is followed. A particularly in-

teresting question is to see whether impurities introduce a

new universality class in the problem. Indeed, it must be
noticed that, in this extended model, steric hindrance will

be due to two different sources, namely self-avoidance
and impurities, which can or cannot be overcome by
branching.

Let us now present our results. We have typically
worked with 300~ L ~ 5000 and 200~ N,„„~10 .
Some polydispersion curves PIv(N) are shown in Fig. l.
We verified that, in almost all points of (b,c) space,
PN(N) decays exponentially with N [Fig. 1(a)]. There
is, however, a (critical) line on which the decay becomes
a power law [Fig. 1(b)]. We can see [in Fig. 1(b)] that,
for e 0, the critical value for b is b, (0)—=0.055. On the
other hand, we see, in Fig. 1(a) that (N)=-1/0. 0097
—= 100 for b=c 0. Consequently, on a basis of Flory-
like arguments [1], one would expect b, = 1/(N)
—=0.0097, much lower than 0.055. Indeed, the fact that
the c=0 threshold [b,(0)—=0.055] is about 5 —,

' times

larger than the slope indicated in Fig. 1(a) (=- —0.01)
refiects the nonlinear nature of the present geometrical
effects. More explicitly, increase of the branching in or-
der to compensate the excluded volume further increases
the amount of excluded volume to be compensated. We
can also check that the discrepancy with Flory's argu-
ments increases (i.e., (N)b, increases) with increasing c.

In Fig. 2 we exhibit typical results for the polymer
mean size g as a function of (b,c) as well as of the
square-lattice size L. In Fig. 3 we present the order pa-
rameter P (b,c) as well the phase diagram in the (b,c)
space. Finally we present, in Fig. 4, a typical example of
M vs R, where M is the polymer mass contained in a
square box (centered at the origin of growth) with linear
size R, in an LXL lattice. This log-log representation
yields the fractal dimensionality df. From this type of
construction we extracted df=2+0.004 for the points
inside the infinite growth region [e.g., (b,e) =(0.1,0)].
On the critical line we obtained values for df monotoni-
cally varying from 1.83 [at (b,c) =(0.055,0)] to 1.76 [at
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dard box method. All data points are displayed to show the ex-
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FIG. 3. (a) Typical results for the order parameter as a
function of (b,c); we used L 300 (the small tails at P =0—
disappear with increasing L). (b) Phase diagram; we used
300~ L «5000 (the full line is a guide to the eye); the inset
schematically represents P (b, c).

(b,c) (],0.4072)]. This slight variation is judged to be
consistent with a single universality class (characterized

by df = 1.8). Nevertheless, to definitely exclude a
nonuniversal behavior along the critical line, morc ex
tensive simulations should be cone. The point (b,c) =(I,
0.4072) corresponds to percolation (the critical value

1
—0.4072 0.5928 is the site percolation threshold

[12]). Indeed, the polymer can grow only in the subset of
points which are not occupied by the impurities. Figure 5

shows a typical growth at this point: Note the existence
of regions belonging to the infinite vacant cluster that will

never be occupied. To make this point obvious we have

also run trifurcating (instead of bifurcating) polymers,
and have obtained full occupancy of the infinite vacant

cluster. For this case we have consistently obtained

df 1.896, which precisely recovers the value [12] associ-
ated with (site) percolation. Since this value is definitely
diA'erent from df =1.76 corresponding to bifurcations, we

believe we are herein exhibiting a new universality class,
clearly related to the incomplete filling of the infinite va-

cant cluster.
The phase transitions experienced by this system exhib-

it some analogy with those shown by Schlogl's model [11]
in the sense that both are kinetic. There are, ho~ever,
essential differences: (1) Our model represents a growth

of a molecule and is therefore highly dependent on

geometry; (2) in the present model there are explicit
memory effects (i.e., the polymerization steps having oc-
curred at previous times) and quenched noise due to im-

purities. The quenched distribution of impurities is con-
sistent with the fact that we do not allow a relaxation of
the steric hindrance in the course of the polymerization.
In this sense our model corresponds to a "low tempera-
ture" regime.

To conclude, let us remark that the model introduced
herein presents a rich phenomenology which mimics real
branched polymerization in clean or dirty media. In par-
ticular, it gives us some insight on how impurities can
affect technologically important properties such as poly-
dispersion. Other studies of this new model would be
welcome. For example, the triangular lattice enables the
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FIG. 5. Typical fragment of a polymer (shaded structure)
grown in a 50X50 lattice with a particular random realization
for the impurity sites (filled dots), and for the critical point
(b,c) (1, 0.4072). The regions A and 8 belong to the infinite
cluster of vacancies but have not been occupied by the bifurcat-
ing polymer; region C is a Pnite cluster of vacancies (and is,

consequently, inaccessible to the growing polymer).
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easy realization of higher-order branching (trifurcations,
tetrafurcations, etc). Also, it seems intuitive that, for
d & 2, b, (0) should be smaller than 0.055 because the
steric hindrance effect would be less efficient. Finally,
one could consider anisotropic or directional growth, an-
isotropic or directional branching, changes in the growth
fronts, and polymers growing (from the very beginning)
from both ends or from various seeds, or even growing on
preexisting nontrivial networks or in their interstitial re-
gions.
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