
YOLUME 72, NUMBER 14 PH YSICAL REYI EW LETTERS 4 APR&L 1994

Spin-Glass Model with Dimension-Dependent Ground State Multiplicity
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We introduce a new Ising spin-glass model and use it to study the relation between quenched disorder,
frustration, ground state multiplicity, and dimension. The Hamiltonian is of Edwards-Anderson type in

any finite volume but the coupling magnitudes scale nonlinearly with volume. We find a mapping be-
tween the ground state structure of this model and the global connectivity structure of invasion percola-
tion in the same dimension. We argue that our model has a single pair of ground states belo~ eight di-
mensions and infinitely many above.

PACS numbers: 75.10.Nr, 64.60.Ak, 75.50.Lk

Disorder and frustration, ingredients central to any
spin-glass model, play an important but poorly under-
stood role in determining ground state structure [1]. Ear-
ly investigations demonstrated that the Sherrington-
Kirkpatrick [2] infinite-ranged Ising spin glass displays
many thermodynamic states at low temperature [3]. A

natural speculation was then that more realistic short-
ranged models [4] in finite dimension d exhibit a similar

ground state structure, particularly in the (physically
relevant) dimension d 3. Both numerical [5,6] and

high-dimensional analytical [7] studies argued in support
of this claim. However, proponents of a scaling ansatz
[8-10] concluded that Edwards-Anderson (EA) Ising
spin glasses possess only a single pair of (spin-inversion-
related) ground states [11] in ail finite dimensions [12],
and that the d ~ limit in these models is singular. Be-
cause of the difficulty of any direct analysis of the EA
Hamiltonian, the question of its ground state multiplicity
in finite d remains one of the central unresolved issues

concerning the nature of the spin-glass state.
In this paper we introduce a new spin-glass model

which is designed to clarify the relation between disorder
and frustration on the one hand and multiplicity of
ground states on the other. As such, the model was

chosen for its mathematical tractability rather than for

physical realism. It demonstrates that the joint presence
of disorder and frustration is not sufficient to draw any a
priori conclusions about ground state structure and/or

multiplicity. In particular, we will show that the ground
state behavior of our model has a transition at eight di-

mensions: In lower dimensions it possesses only a single
pair of ground states in the thermodynamic limit, while in

higher dimensions it has uncountably many. The model

is appealing because, while it is complex enough to have a
rich behavior in its ground state structure, it is simple
enough to study analytically, and moreover, the mecha-
nism by which the number of ground states changes can
be precisely identified. Equally important, and the basis

of this identification, is a mapping to invasion percolation
[13-15].

The mode/. —We work on a cubic lattice in d dimen-

sions, i.e., of sites x 6 Z and edges connecting nearest-
neighbor sites only. We provide two descriptions of the
model —a Hamiltonian and an algorithmic construction
of its ground states. We begin with the latter.

Associate each site with an Ising spin variable o„
=+ l. On the edges there are nearest-neighbor cou-

plings whose values are determined by independent ran-

dom variables: e» ~ 1 with equal probability, and K»
chosen from some continuous distribution (e.g. , uniformly
distributed between 0 and 1). The e,„'s give the signs of
the couplings and the K»'s the ordering of their magni-

tudes: An edge with a smaller K» value has a larger
magnitude coupling, and will be said to have a higher or-
der.

Given a cube A of volume L" centered on the origin
and some boundary condition on 8A, construct a ground
state (modulo a spin flip if the boundary condition is spin

flip symmetric) by the following procedure: Find the

smallest K», and choose the spins a, and cr„such that

e,e» &cr0; i.e., the coupling is satisfied. Then find the

coupling with the next larger Kzy value, and choose the

spins on its end points to satisfy it. Repeat this pro-

cedure, unless a resulting closed loop (or path connecting
two boundary sites) with previously satisfied couplings
forbids it. When that happens, simply proceed to the

coupling next in order, and continue until every coupling
has been tested.

Note that until an edge-connected cluster of spins

reaches the boundary, only the spins' relative orientations
are known. If the boundary condition breaks spin-Aip

symmetry, the sign of each spin in a cluster will be deter-
mined as soon as it connects to the boundary.

For a given L, a Hamiltonian which has a ground state
structure obtainable via this procedure is the usual

Pt. = —Q~„r&j,r cr„crr, but with the magnitude of each

2286 0031-9007/94/72 (14)/2286(4) $06.00
1994 The American Physical Society



VOLUME 72, NUMBER 14 PH YSICAL REVI EW LETTERS 4 APRIL 1994

coupling constrained to be greater than the absolute sum
of all the smaller magnitudes; e.g., it suffices if each
)J,t ~

is at least twice as large as the next smaller one. It
is clearly impossible for such a constraint to be generally
satisfied if the J„y 's are independent random variables
with a common distribution not depending on L (the usu-
al situation in an EA spin glass). However, it can be
satisfied, for example, via an L-dependent nonlinear scal-
ing factor, X, , by defining

J(L) ~ ~ e x
g(L)g

xy L xy

where e,z and K,z have the same meaning as before, and

cL is a linear scaling factor which plays no role in ground
state selection. If A. is chosen to increase su%ciently
rapidly as L ao, then the above constraint is satisfied
for all large L (with probability 1). We note that this
model is intended to elucidate properties of ground state
structure only, and has no interesting behavior at nonzero
temperatures.

Statement of the problem —The .question of whether
this model has multiple ground state pairs is equivalent to
whether a change in boundary conditions can change a
coupling deep in the interior from being satisfied to
unsatisfied, or vice versa.

We therefore ask whether any coupling J„»exists with

the following property: Before any path of satisfied cou-
plings joining xi and x2 within A is formed according to
the algorithm described above, there exist two disjoint
paths, one joining x~ to the boundary, and the other join-
ing xq to the boundary. If such a coupling exists, then
whether it is satisfied or unsatisfied will be determined by
the boundary conditions.

When the boundary is sufficiently far from some interi-
or region, it may be that no such coupling exists within
the region —each coupling is either itself tested before
two such disjoint paths can be found, or e)se its end points
are first connected via some internal path of previously
tested couplings. If that is the case, only a single pair of
spin-fiip-related ground states exists in the thermodynam-
ic limit. Otherwise, the system possesses multiple pairs of
ground states.

Mapping to invasion percolation —We now re.formu-
late our model as follows. Starting from some site x, we

construct a growing tree in the following way: From
those edges touching x, find the one whose coupling has
the highest order and satisfy it. Now consider all edges
from that edge connecting to new sites; pick the highest
order of those and satisfy it. Proceeding inductively, we
generate trees T„(x) of satisfied couplings containing n

edges and n+ l sites. This procedure is identical to that
employed in invasion percolation (except we include only
edges which connect to new sites) on a d-dimensional cu-
bic lattice [13-15].

For a given L and fixed boundary condition assigning
spin values to 8A, o, is determined by the tree TN(x) at
the (random) time N at which Tjv(x) just reaches BA

and by the value of the boundary spin it touches at that
time. It is not hard to show that the value of a, obtained
in this way will agree with that given by our earlier algo-
rithm. It follows that the question of many (pairs of)
ground states in the infinite volume limit is precisely
equivalent to that of whether disjoint trees T (x) can be
found for many sites x.

We can then already answer the question of multiplici-
ty of states of this model in two dimensions. Because it is

rigorously known that for d 2 invasion percolation the
trees T (x) and T (y) always intersect (in fact are the
same modulo finitely many sites) [16], it follows that our
model has only a pair of ground states in two dimensions.
Whether any two such trees in higher dimensions must
intersect is an interesting problem in invasion percolation,
which we now consider.

Multiplicity of ground states. —The question of multi-
plicity of ground states in our model has been mapped to
that of whether invasion percolation has nonintersecting
invasion regions. Invasion percolation has the feature
that the invaded region asymptotically approaches the
so-called incipient infinite cluster (i.e., at the critical per-
colation probability p, ) in the independent bond percola-
tion problem on the same lattice [17]. The fractal dimen-
sion D of the incipient cluster in the independent bond
problem on the d-dimensional cubic lattice is known from
both numerical studies and scaling arguments; in particu-
lar, D is dimension dependent below six dimensions, but
D 4 for d~6 [17].

The following heuristic argument might then provide
an intuitive picture of our model's behavior. Consider
two invasion regions T (x) and T (y) emanating sepa-
rately from points x and y, both in Z~, which are very far
apart. If the fractal dimension of each region is less than
d/2, the randomly growing trees will "miss" each other
with high probability; otherwise, they will connect up. It
would follow that if the fractal dimension of the invasion
region is equal to D, then the critical dimension of our
model is eight. Below eight dimensions invasion regions
should always intersect, and hence there would be only
one pair of ground states in our spin-glass model; above
that there should be an infinite number. Similar heuristic
reasoning suggests that for d & 8, the number of distinct
configurations on the L cube coming from (infinite
volume) ground states should be of order 2

A potential problem with the above argument is that D
is only a lour bound for the fractal dimension D; of the
invasion region. Our main task is then to determine D; as
a function of space dimension d. In order to make our ar-
gument clearer, however, we first make more precise the
intuitive notion that nonintersection should occur if
D; & d/2.

Nonintersection in invasion percolation. —Consider in-
vasion percolation as described above, and define a pair
connectedness function G(y —x) as the probability that
the site y E T (x).

We now make the following claim: If
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(2)
xe Zd

then there exist infinitely many disjoint invaded regions;
i.e. (with probability 1), there are sites xi, x2, . . . so that
T (x;) A T (x, ) =g.

Because of space limitations, we merely sketch the
(rigorous) proof of the above claim. First, one shows that
square summability of G(x) implies that for x; and xi far
apart, the probability is small that T (x;) meets (or
comes close to meeting) an independent [18] region
T' (xj ); this is done by using Fourier transforms to
bound the expected number of (near) meeting sites.
Then one notices that the probability not to come within
distance one of meeting T (x;) is the same for T' (xi)
as for T (xj ). This follows by an appropriate construc-
tion [16] of the invaded regions which shows T (xj)
remains independent of T (x;) as long as they do not
come within a single edge of one another.

Now define D; by the relation [17,19]

G(y —x) —I/~y —x~' (3)

as ~y
—

x~ ~; then the claim that nonintersection of
infinite invasion regions must follow when D; &d/2 has
been made precise [20]. It remains to determine D; as a
function of d. This we will do nonrigorously by utilizing
results already in the literature.

Monte Carlo simulations of invasion percolation on
square and simple cubic lattices [15] provide strong evi-
dence that D; D in dimensions two and three (D =91/48
and D 2.53) [17]. In higher dimensions, less is known.
There does exist, however, an exact solution for invasion
percolation on a Cayley tree [21]. From this solution,
one can deduce the fractal dimension D; of the invasion
region using two diA'erent measures. The first is to let the
invasion proceed for n steps, and then compute the radius
of gyration R. For the Cayley tree, it was found [21]
that, as n , R —n ' ", consistent with D; =4. The
second, which is much closer to Eq. (3), is to evaluate the
shape function, S",which is the mean number of invaded
sites on level m of the Cayley tree for an invasion of n

steps. By analyzing Eq. (9) in Ref. [21] (valid for the
simplest Cayley tree) in the limits P 1 and a I (in
that order), we find that S~ is proportional to m (with
logarithmic corrections) as m ~. The total number of
sites invaded up to level m thus scales as m . The usual
measure of distance on a Cayley tree places level m at
distance Jm from the origin, leading again to D; =4.

We therefore conclude that D; =4 is an upper bound
for the fractal dimension of an invasion tree on a lattice
in finite dimension. Given that D; ~ D in any dimension,
and given the known values of D, we conclude that the
critical dimension in our problem is eight.

Boundary conditions and chaotic size dependence —In.
an earlier paper [22], the authors argued that multiplicity
of ground states in the EA Ising spin glass was associated
with nonexistence of a single limiting Gibbs distribution,
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in the thermodynamic limit, for coupling-independent
boundary conditions. We find that the same association
holds here. While the conclusion is fairly clear for any
sequence of axed boundary conditions, in which each
boundary spin is assigned a definite value, the mechanism
for spin-symmetric (e.g. , free or periodic) boundary con-
ditions is more subtle. Its investigation provides deeper
insight into the nature of our spin-glass model, and in

particular the role played by frustration.
In all dimensions the ground state structure is deter-

mined by the subset of couplings which are satisfied in

our algorithmic construction regardless of their sign.
Unlike the set of ail satisfied couplings, this subset can
form no closed loops and hence must yield one or more
trees. It is easily seen that each site belongs to one of
these trees, and that each tree connects to the boundary.
The set of such trees, in the thermodynamic limit, equals
the union over all x of T (x). We will call this set the
"invasion forest" [23]. Below eight dimensions there is
only one tree in this forest, while above eight dimensions
there are infinitely many disjoint trees. The "state" of
each tree can be one of a pair of spin configurations relat-
ed via a global flip. The boundary spins, if fixed, will

determine the sign of each spin on a given tree. If the
system passes through a sequence of volumes with fixed,
coupling-independent boundary conditions, the "sign" of
each tree will randomly flip, and no single limiting
ground state is obtained in the thermodynamic limit.
Indeed the size dependence is suIIiciently chaotic that all
of the uncountably many ground states will appear as
limits along coupling-dependent subsequences of volumes.

Consider now the case of a finite cube ACZ, with
d & 8, and with spin-symmetric (e.g., free or periodic)
boundary conditions. At first it might seem that our ear-
lier conclusions are incorrect, because for every Pnite
volume there is only one tree This is bec.ause, unlike
when the boundary spins are fixed, the procedure of satis-
fying couplings of increasingly smaller order will be con-
tinued until all sites are connected. Nevertheless, there
again is no single limiting pair of ground states for a se-
quence of volumes (chosen independently of the cou-
plings) with spin-symmetric boundary conditions. The
reason is that, as L ~, the path of edges connecting
two trees (which would not be connected with fixed
boundary conditions) will move out to infinity [241, so
that the relative sign between trees flips randomly.

This surprisingly subtle phenomenon highlights the im-
portance of frustration in our model. If one constructed a
model of a random ferromagnet using the same algorithm
but with all p» +1, then one could again generate
many ground states (in d & 8) with appropriate choices
of fixed boundary conditions (just as one can with uni-
form ferromagnets in any dimension or ordinary random
ferromagnets [25] in d & 5). However, free or periodic
boundary conditions ~ould yield a single pair of ground
states as L , namely, all spins up and all spins down.
As with the usual models of ferromagnets and spin



VOLUME 72, NUMSER 14 PHYSICAL REVIEW LETTERS 4 APRIL 1994

glasses, the diA'erence in ground state structure is re-
vealed most sharply through the use of spin-symmetric
boundary conditions.

Conclusion. —We have introduced a nearest-neighbor
Ising model containing both quenched disorder and frus-
tration. %hile its Hamiltonian has the same form as that
of the EA spin glass, the unusual scaling of the couplings
allows for a direct mapping onto invasion percolation.
Our conclusions apply to both invasion percolation and to
our spin-glass model:

(I) The invasion forest on the infinite lattice Z has
only one tree in dimensions less than eight, and infinitely
many above eight.

(2) In the spin-glass model introduced in this paper,
there exists only a single pair of (spin-inversion-related)
ground states in dimensions less than eight, and uncount
ably many above eight.

In both cases, eight is a marginal dimension; the eluci-
dation of its ground state structure requires further inves-

tigation.
We reemphasize that our spin-glass model is highly

simplified, and should not be used to draw any firm con-
clusions about the ground state structure of realistic mod-
els, particularly the EA Ising spin glass. We do claim
that it demonstrates that quenched disorder and frustra-
tion of even the simplest variety can lead to a rich behav-
ior, and that their presence does not alone ensure any
preordained conclusions about number or structure of
ground states.
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Note added in proof. —After this paper was submitted,
we learned that Cieplak, Maritan, and Banavar [26] have
independently studied this model. We thank Jay Banavar
for bringing this cwork to our attention.
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