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Nonlinear Conductivity of a Wigner Crystal in a Strong Magnetic Field
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We investigate the sliding state of a two-dimensional Wigner crystal in a strong magnetic Geld
in the presence of randomness and free carriers, using a high-velocity perturbation theory. We Gnd
that the Hall resistivity retains its classical value within the second order Born approximation, and
that disorder induces predominantly transverse distortions. We calculate the interference efFects
that arise in combined ac+dc fields for the present system. We examine recent experiments that
measure the nonlinear conductivity for the insulating phases in the &actional quantum Hall efFect
regime.
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The possibility of observing a Wigner crystal in a two-
dimensional (2D) electron gas in a strong magnetic field
continues to draw attention [1—6]. Around magnetic fill-

ing factor v = 1/5, reentrant insulating phases have been
established in the cleanest samples currently available
[2-6]. Nonlinearities in the conductivity, attributed to
the collective sliding motion of the Wigner crystal, have
been reported by several groups [3-6]. Unfortunately,
at present, these experiments difFer in many important
ways, making a consistent interpretation dificult [7].

In this work we provide some theoretical basis for a
more rigorous and quantitative interpretation of these
interesting experiments. We calculate the nonlinear con-
ductivity and various correlation functions in the sliding
state of a Wigner crystal in the presence of strong mag-
netic field, random disorder potential, and free carriers.
We model the Wigner crystal as an elastic medium and
use a perturbative treatment of disorder effects, valid at
large sliding velocities. We estimate the regime of valid-
ity of the elastic theory We discu.ss the current exper-
iments in light of our results, and suggest some future
experiments.

We view the Wigner crystal as a deformable classical
elastic medium and adopt the Fukuyama-Lee-Rice (FLR)
model for pinning, originally devised for charge-density
wave (CDW) systems [8—14]. We Brst ignore the free car-
riers that are thermally excited, and assume that in the
ground state there are no free carriers to carry transport
current. The equation of motion in real space is then

p u+Ap u+p ue, xu+ Dr —r' ur't r'

disorder and free carriers, to, = p,B/p c is the cy-
clotron frequency, and D(r —r') is the dynamic matrix.
p(r) = P& p(G)e'o' on the right-hand side is the spa-
tially varying charge density of the original Wigner crys-
tal with G being a reciprocal lattice vector, and E'"~ is
the external driving field. In the presence of a strong
magnetic field, as long as the relevant frequency is much
less than min(A, to, ), we can always ignore the inertial
term [7]. This condition is invariably satisfied in ac-
tual experiments and we will neglect the inertial term
in Eq. (1) henceforth [7].

Related models with B = 0 have been used for the
CDW systems [11—13]. They exhibit a pinned phase be-
low a threshold Beld ETh, and a sliding phase above it.
Roughly, ETh p~c a/2n p,g [8], where a is the lattice
constant, (T is the correlation length, and c+ the shear
modulus. For B P 0, the low energy dynamics is deter-
mined by a mode with dispersion u2ur, = c c (k/a)s.
Here c+ = aA2a~ and c = 02[2na+ (1+n)a2k], with
n 0.02, and A2 = p~/p ae [8]. The present model
difFers from the previous CDW cases in that it involves
a large magnetic field, different dispersions of the col-
lective modes, and charge-density order parameter p(G)
that are nonzero for G's on a two-dimensional grid.

We study in this paper the sliding phase of Eq. (1) in
a large external dc field E'"~. It is convenient to write

p g ~(
A —td

p~ g~c & )
and

u(r, t) = vot + x(r, t).

= p,E'" —p(r) V,Vd;, (r + u(r, t)), (1)

where the Wigner crystal is taken to be in the (x, y)
plane, e, is a unit vector in the direction of the mag-
netic field, u(r, t) is the 2D displacement at (r, t), p~
and p, are respectively the average mass and charge den-
sity, A is a phenomenological damping constant that in-
cludes all other sources of dissipation except those of

x(k, (u) = G(k, (u) F(k, ~; (x}), (4)

where F(k, u;(x)) is the Fourier transform of —p(r)
x V,Vd;, [r+ vot+x(r, t)]. G is

vst solves Eq. (1) if V~;, = 0; x(r, t), represents the addi-
tional displacement due to Vd;, . Formally, the Fourier
transformed m can be written in terms of the tensor
Green's function G as
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where we have left out the cyclotron resonance in G, and taken the long wavelength, elastic medium theory limit
which implies u « A. (Throughout this paper, G denotes the 2 x 2 Green s function, and 0 denotes the reciprocal
lattice vectors. ) The poles in G then determine the collective modes at a &( u„given by

P(k, u)) = 27rO np [{ka)s—rs —i(ka)~„] = 0.

x(r, t) =

In the above equation, we have defined two dimensionless quantities:

ur (~, +A ) ~ ~A

2n 04+ ' " Azn

K~/a is the wave vector at which the ks~2 mode defined before has an energy ~, and ri, measures the strength of
dissipation at the frequency u. Equation (6) gives the response function of the system: For r « ri„ the response
given by Eq. (6) is overdamped; but in the opposite limit, it is underdamped despite the fact that a (( A, owing to
the presence of a large magnetic field.

We generate a perturbation series for x(r, t) in powers of the random potential by expanding F((xj) in Eq. (4) in

powers of x and solving it iteratively [7,12,13]. We obtain for the displacement to first order in Vq;,

dzk dsq

(2m)2 (2~)s
e'"'+'(~'"' '[—p(k —q)][G(k, —q vp) (iq)]Vp;, {q),

and the velocity to second order

A'
I (x) =).Ic(G)l'

d

(27r) z qI'(q)(q [
—ImG( —q+ G, q vp)] q),

where Vg;, (q) = f d r e 'i'Vj;, (r), and {Vj;,(q)Vj;, (q')) = b(q+q')I'(q), where ( ) indicates averaging over disorder.
In the above two equations, integration over k is restricted within the first Brillouin zone and that over q is over the
entire reciprocal lattice space.

We now focus on Eq. (9), the integral in which is dominated by two infrared terms where the elastic medium theory
is valid. They are respectively related to r,„and Kq in Eqs. (6) and (7) with cu = u„= lc vpl. Both r and ri,
are much less than unity at this frequency [7], and their ratio K„/r& = (u„ai4n/4vr2AsA2) i~s depends on the sliding

velocity vp. We find that in general

(x) = —~p, ~ ):lv(G)l'I'(G)IGI'G sgn(& vp)
C

= -(&p~./~ )—', (1o)
VO

Ap~ .j*+Eo
p2

(12)
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where the constant ap is n/3 if z » Kg and is n/4 if
« rp, and the second equality, where it is assumed

that sliding occurs along the direction of one of the re-

ciprocal lattice vectors G, defines the quantity Ep. Ep
is uncertain up to a numerical prefactor of order unity
that depends on the direction of v relative to the lattice
orientation.

It is then straightforward to obtain the sliding current
which is given by the total velocity vt, i

——vp + (x), for a
given external field E'"' in Eq. (2). For later convenience,
we here give results in the equivalent form of resistivity:
Taking the direction of the current How to be along x
(ji t ——j ), we find

cPm .
L'y = jxip2

Ep is an estimate of the threshold field, which divers only

by a numerical prefactor from that estimated from the

static properties [8]. Notice that only cT, the shear mod-

ulus, appears in the above equations. In a recent work

[15],a perturbation theory on the static lattice is carried
out. Our expression for Ep, the approximate depinning
threshold, is similar to the expression for the square of
the pinning gap obtained for a static Wigner crystal in

Eqs. (3) and (4) of Ref. [15]. However, unlike Ref. [15],
we focus in the sliding state on the infrared singular con-
tribution, which depends only on the shear modulus. We
will present a detailed discussion of the relation between
calculations for the static and sliding crystals in a subse-

quent paper [7].
We see from Eq. (11) that p» is not modified to lead-

ing order Eo. We believe this result holds everywhere
in the sliding phase, provided the pinning is isotropic on
average, because if the whole signer crystal slides with
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an average velocity v, then there is an average Lorentz
force per unit area vB =j B/p, (j is the sliding current)
which must be balanced by a transverse electric field, im-

plying p „=B/p, . Also, in Eq. (12) the correction term
Eo does not depend on the sliding velocity itself, as was
previously found for 2D CDWs [12,13]: The difFerences
between the CDW and the present system outlined in the
introduction do not change this result.

We now consider the effects of thermally excited free
carriers [9],which become important at somewhat higher
temperatures ( 50 mK and above). Under the assump-
tion that there is no interconversion between the free
carriers and the sliding lattice, and that the coupling
between the Wigner crystal and the free carriers is elec-
trostatic, the efFects amount to changing the longitudinal
propagator to [8]

L 2 2mka 2c k=0 .„~ (
+(1+o)(ka)

(13)

where a, is the longitudinal conductivity of the free
carriers which is the measured conductivity below the
sliding threshold [8]. The conductivity scale, pro

aeA/2ir, is slightly smaller than ez/h for a typical
GaAs/A1GaAs modulation doped FICHE sample. The

quantity M(k, id) = &z~
' determines the importance

of free carriers at wave vector k and frequency ur. For
M )) 1, c k = i~Ai+0 (ka), with Ai = 2irAo'0/o', in
which limit the free carriers simply provide an effective
damping term.

By repeating the perturbative analysis, we find [7]
that the resulting nonlinear conductivity is the same
as Eqs. (11) and (12), because A does not enter Es in
Eq. (10). This is a special feature of the second order
perturbation theory in two dimensions. However, the en-
hanced dissipation must enter at fields close enough to
the threshold where longitudinal distortions are large;
therefore we expect a crossover from a high-velocity
regime where the difFerential conductivity is o inde-
pendent, to a lower velocity regime where it depends on
cr, and consequently on temperature.

We now turn to the recent experiments. Detailed non-
linear I-V features from the experiments vary from sam-
ple to sample, and within one sample from cooldown to
cooldown. According to the behavior of the conductiv-
ity at fields above threshold, the current experiments fall
into two categories:

(1) The differential conductivity is voltage- and
temperature-independent above threshold. This is re-
ported in Ref. [4] which finds a very large threshold field

( 50 mV) at the lowest temperatures 36 mK, and in
Ref. [5] which finds a much smaller threshold field ( 0.2
mV) and is done at very low temperatures ~ 20 mK.

(2) The difFerential conductivity above the threshold
field continues to depend on voltage and temperature, as
reported in Refs. [3] and [6]. The threshold field is found

to be small ( 0.2 mV) [3,6]. The temperature depen-
dence of the differential resistivity is found in Ref. [6]
to be thermally activated with an activation gap iden-
tical to that below threshold, for temperatures between

80 mK and 200 mK. However, it is also reported
in Ref. [6] that there exists a second "upper threshold"
field at 30 mV above which the differential resistivity
is no longer field or temperature dependent, and its value
is consistent with those in Refs. [4,5].

We first compare our theory with experiments done
at the lowest temperatures where thermally activated
free carriers are unimportant, i.e., the experiments in the
first category described above. The predicted I-V curve
from Eq. (12) agrees very well with the low temperature
experiments (Fig. 2 in Ref. [5] and Fig. 2 in Ref [4.])—that is, the difFerential dc resistivity does not depend
on the driving field, or equivalently on the resulting cur-
rent above the sliding threshold. In addition, the inter-
cept of the I-V curve from the high-velocity perturbation
theory also gives a measure of the sliding threshold field.
From Eqs. (11) and (12), one sees that this statement
can only be true when, in plotting the I-V, the field V
is measured along the direction of the current fiow [7].

We now consider the large field () 30 mV), therefore
high-velocity data, reported in Ref. [6] in which electron
heating was invoked to explain the data. We wish to
propose an alternative possibility. The difFerential con-
ductivity in the V ) 30 mV regime is field and tem-
perature independent, and has roughly the same value

( 10s 0) as the lowest temperature data in Ref. [5].
This experimental fact [16] is consistent with our result
that the large-velocity difFerential resistivity is 0» in-
dependent. However, as we pointed out above, as the
velocity decreases, a crossover is expected to a regime
where 0 ~ affects the differential conductivity, and where
our second order perturbation theory is no longer valid.
This crossover may correspond to the upper threshold in
Ref. [6].

To provide some qualitative feel for the sliding state
and to check the adequacy of the elastic medium approx-
imation, we have also calculated the velocity-velocity and
the strain-strain correlation functions [7]. The latter is
defined as (averaged over disorder)

El = [V x(r, t)]z, ET', = [V x x(r, t)]z. (14)

They are respectively proportional to the elastic energies
associated with the bulk and shear moduli if there were
no long range Coulomb interaction. We find

Eop, /p 1 ( a ) 02o.
Azna max(zp, z ) ((z ) ur„A'

(»)
Here P is a dimensionless constant of the order of unity.
At small velocities, it diverges very weakly as ln
Although the functional form will likely be modified by
higher order terms in perturbation theory, this indicates
the breakdown of the elastic approximation close enough
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to threshold [14]. The divergence is so weak and the
prefactor so small that we expect in practice the elastic
approximation to be valid throughout the sliding regime.
Using parameters typical of those in the experiments [8],
ET is about 10% when the field is a few percent greater
than the threshold field according to Eq. (15). Similar
analysis shows that in all cases E~/ET ( (o./2m)s
~0-'.

We have also explored the combined ac + dc effects in
the present system. A full account of the results will be
given later [7]. For convenience, we define

A(G) =
]p(G) I'l'(G) lGI'.

4xp c+

For a dc current j4, = p,v in the presence of an ac cur-
rent j„=p,v coarct, the dc field (Shapiro anomaly) is

l foundtobe

p,E = p~ l &'
l

v+ p,Eov/v+ o.c ) A(G)sgn(G v —~0)J„(G v '/uo)v/v.
(A 2 8C

(4J~ A
C,n+Q

(17)
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(18)
and the out-of-phase component (Imp») is

(p,E),„,= ) A(G) ln
G4Pp

(19)

The out-of-phase part of the longitudinal ac resistivity
should show an inductive to capacitive transition as cue

goes from below G v to above. The in-phase diagonal
resistivity changes from roughly +[A —Eop, /(p~~o)]
to +[A+ E p,O/(p~~ )]sas us increases through G v.
The Hall resistivity for both the Shapiro anomaly and
the ac response (with parallel dc and ac currents) shows

no interference effects. Preliminary experimental data
have indeed observed an inductive behavior in the low-

frequency ac response of a sliding Wigner crystal, which
when pinned exhibits a capacitive response [17].

To summarize, we have studied the sliding state of the
Wigner crystal in the FICHE regime with a high-velocity
perturbation theory. The theoretical nonlinear conduc-
tivity agrees with experimental results obtained at the
lowest temperatures or large external 6elds. In addition,
we predict interference phenomena under a combined ac
and dc field.
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