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Quantized Conductance in an Atom-Sized Point Contact
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We present direct measurements at room temperature of the conductance of a point contact be-
tween a scanning tunneling microscope tip and Ni, Cu, and Pt surfaces. As the contact is stretched
the conductance jumps in units of 2e?/h. Atomistic simulations of the stretch of the contact com-
bined with calculations of the conductance using the Landauer formula show that the observed
behavior is due to the quantization of the transverse electron motion in a contact which contains

between one and ten atoms.

PACS numbers: 73.40.Cg, 61.16.Ch

Within the last few years a large number of exper-
iments have shown unique electron transport properties
of narrow (~1 um) constrictions formed in GaAs-AlGaAs
heterostructures [1). One example is the quantization of
the conductivity in units of 2e2/h [2] which has been in-
terpreted using the Landauer formula as a consequence
of the quantization of the electron motion perpendicular
to the conductor [3,4]. The observation of these effects is
limited to temperatures smaller than the energy spacing
between the perpendicular modes. The mesoscopic size
of the constrictions formed in semiconductor heterostruc-
tures restricts the temperatures where these effects are
observable to be less than a few K [1].

When the tip of a scanning tunneling microscope
(STM) is brought into contact with a metal surface a
point contact is formed with very small cross section [5].
The contact can be thought of as an atomic size con-
striction in which the level spacing would be drastically
larger than for the semiconductor mesostructures. Quan-
tization of the conductance should therefore be observ-
able at much higher temperatures. Recently, STM point
contact measurements have shown jumps in the tunnel
current as the contact has been stretched [6,7]. Similar
observations have been reported based on the mechan-
ically controllable break junction technique [8]. These
observations may be an illustration of the quantized con-
ductivity in a very narrow constriction, but the situation
is less clear than in the semiconductor heterostructure
case. It has been found that for some metals (Al and Ni)
the unit of quantization of the conductance is 2e2/h and
for others (Pt) it is not [8]. Also the interpretations of
the quantization usually differ, since most authors ascribe
the jumps in conductance during stretching to abrupt
changes in the cross-sectional area of the contact con-
nected with the formation of new crystal planes in the
contact region [9].

In the present Letter we demonstrate that in point
contacts of atomic dimensions made in an STM, the con-

ductance is quantized in units of 2e2/h even at room
temperature. We measure the current and the voltage
over the tip-surface junction simultaneously under well
controlled ultrahigh vacuum (UHV) conditions on single
crystal surfaces. The directly measured conductance G
shows jumps in units of 2e?/h as the contact is stretched
for all the metals (Ni, Cu, Pt) studied. Combining these
observations with an atomistic simulation of the contact
and a model calculation of the conductance based on a
Landauer-type theory, we show that the jumps in G are
a direct consequence of the quantization of the trans-
verse wave vector in a simple one dimensional contact
rather than being directly related to sudden jumps in
the width of the contact. In particular, we are able to
model not only the quantized nature of the conductance
during stretching of the contact, but also the absolute
magnitude of the stretch per quantum level showing that
the dimensions of the contact in the experiment and in
the simulation are the same. These experiments thus
provide the characteristics of ultimately small contacts
consisting of only one to ten atoms.

The experiments, all carried out at room temperature
on single crystal Cu, Ni, and Pt surfaces, were performed
with a compact, high stability UHV STM [10] by record-
ing simultaneously both the current and the voltage in
the tip-surface junction during the tip approach and re-
treat from the sample surface. Typical experimental re-
sults for Ni(100) are depicted in Fig. 1. Prior to the tip
indentation, the clean Ni(100) surface is scanned, and
atomic resolution is obtained with typical tunneling pa-
rameters I; ~ 2 — 5 nA and V; ~ 2 — 5 mV, that is, the
tunnel conductance is of the order 1 uS. This corresponds
to a tip height of 2-3 A and in Fig. 1 this tunneling height
defines the reference point (z = 0) for the subsequent tip-
indentation sequence. At a chosen point in the STM z-y
scan the feedback loop is opened, the tip is withdrawn
~15 A and subsequently driven ~20 A towards the sur-
face at a rate of ~1000 A/s. As seen from Fig. 1(a)
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FIG. 1. Tip indentation curves for Ni(100) showing the cur-
rent (a), voltage (V;) (b), and conductance (c) and (d) across
the junction. During the approach the conductance is seen to
follow an exponential increase all the way to point contact,
yielding a constant effective barrier height. This observation
is in disagreement with previous studies of I versus z, where
a varying barrier height was found. This will be discussed
further elsewhere.

the current in the junction increases with decreasing tip
surface distance until suddenly a point contact between
the tip and the surface is formed and the current satu-
rates at ~20 nA. Subsequently the depth-time sequence
is reversed, that is, the tip is withdrawn from the sur-
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face again at a rate of 1000 A/s, and the point contact
breaks, causing a dramatic drop in the current to a value
in the tunneling regime. Finally, the tip is brought back
to the reference point (2=0), the feedback loop is closed,
and the scanning is continued. The total time for the
tip-indentation/retraction sequence is ~30 ms.

It is most important for these studies to realize that
the actual voltage across the junction (V;) is not at all
constant but decreases dramatically as the tip is driven
towards the surface; see Fig. 1(b). The reason for this is
the finite input resistance (120 kQ2) of our current pream-
plifier, and the applied tunnel voltage (V;) is divided be-
tween this input resistance and the resistance of the STM
junction. In order to measure Vj;, an additional low noise
and high input impedance amplifier is connected directly
across the junction. The low noise level ~3 uV rms al-
lows an accurate determination of V; corresponding to a
resolution of about 100 Q of the junction resistance. This
scheme allows for both high and low impedance measure-
ment of the junction over 6 orders of magnitude. Figure
1(c) shows the ratio between the current and the voltage
in the junction, that is the variation in the conductance
G. During the approach of the tip to the surface, InG
varies linearly with tip sample separation as expected in
the tunneling regime. At a distance of z = —2 A the tip
snaps into point contact with the surface causing a sud-
den jump in G. A Ni contact neck is formed and when
the tip is withdrawn, the contact neck stretches. Dur-
ing this stretching it is observed that the conductance is
quantized in units of 2e2/h (77.5 uS), until the contact
finally breaks at z ~ 10 A [Figs. 1(c) and 1(d)).

When the scanning is continued after point-contact for-
mation and disruption, a 2-5 A high and 10-50 A wide
protrusion is found on the Ni surface. Results such as
those shown in Fig. 1 are reproducible only after sev-
eral indentations have been performed. In this case the
original W tip is probably covered with Ni and thus the
results are interpreted as an indentation of a Ni tip into
a Ni(100) surface. For each new indentation G is always
quantized in units of 2e2/h, but exactly which quanta of
2e?/h are observed differs from indentation to indenta-
tion.

Figure 2 shows conductance curves for clean Cu(100),
Pt(100), and oxygen covered Cu(100) surfaces. In all
cases the conductance G is quantized in units of 2e2/h.
A typical length (2 displacement) per quantum step is
~1.3 A for Ni, ~1 A for Cu, ~0.7 A for Pt, and ~0.8 A
for O/Cu(100).

In our modeling of these experiments we notice from
Fig. 1 that during the stretching of the contact a wire
must be pulled between the tip and the surface, since the
jumps in conductivity are observed after the contact has
been stretched more than 10 A longer than the original
length of the tip. We therefore concentrate on the thin-
ning of the neck during the retraction of the STM tip,
by performing a series of Langevin dynamics simulations
of a metallic wire as a function of its length using the
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FIG. 2. Conductance curves for O/Cu(100), Cu(100), and
Pt(100); only the quantized parts of the curves are shown [see
Fig. 1(d)]. While the stretching length of the neck for clean
Cu and Pt is comparable to the Ni case, it is considerably
shorter for the oxygen covered surface, presumably due to a
smaller diffusivity here.

interaction potential derived from the effective medium
theory [11]. We have concentrated on a Ni(100) wire with
a starting cross section of 3 x 4 atoms and which is 16
atoms long. If we start with a thicker wire then the last
part of the simulation will be similar to the results shown
here.

The positions of the atoms in the wire were first opti-
mized by steepest descent minimization. The data were
then recorded while the wire was strained by keeping
the lower three layers fixed, while the upper three layers
were moved 15 A over 216 ps at 300 K. The strain rate is
5.4%/ps equivalent to a speed of 7.2 m/s. We obtained
similar results at 600 K, using a strain rate of 1.6 m/s
and in simulations using simulated annealing over limited
times and at moderate temperatures to find local equilib-
rium configurations. We have also done simulations for
Cu and Pt with very similar results.

From the simulations, the minimum cross-sectional
area of the wire can be extracted as a function of the
length. This is shown in Fig. 3. The area changes in
rather well defined jumps associated with a series of me-
chanical instabilities as suggested by Landman et al. [12]
and Todorov and Sutton [9]. We find, in agreement with
Landman et al. [12], that the instabilities are associated
with dislocation formation.

To calculate the conductance of the nanowire we em-
ploy the theory of Landauer [3] and Biittiker et al.
[4]. They have shown that the conductance of a one-
dimensional conductor with a barrier connecting two
reservoirs is

e2
a=2Tzij(1—Ri), Ri=3 Ry (1)

J

where R;; is the probability that an electron that enters

channel i is reflected in channel j. Here we have defined

the conductance as the ratio of the current through the

conductor and the voltage between the reservoirs.
When the electrons are moving in a very narrow con-

striction, the electron motion becomes quantized in the

Expansion (A)

FIG. 3. The calculated minimum cross-sectional area of the
wire as a function of the elongation. Also shown is the calcu-
lated conductance with (thick curve) and without tunneling
included. In the simulations, thermal noise has been reduced
by the formation of a running average over a 2.7 ps interval.
Insets show snapshots of the nanowire along the stretching
process. The area of one atom is 6.27 Az

transverse directions. We assume a narrow rectangular
conductor in the z direction limited by infinite poten-
tial walls in the z-y plane, so that the potential is in-
finite in the region outside —L—"é—zl <z < %ﬂ and

_E@ <y< 2@ We also assume that the dimen-
sions in the z-y plane vary slowly with z (the adiabatic
limit), then the Schrodinger equation can be solved in the
z-y plane, and the electron motion along the conductor
is governed by a one-dimensional Schrédinger equation
with the effective potential

Rn?( n2 | n?

Vrems (2) = (L,(z)2 * Ly(z)z) @
Here L, and L, denote the dimensions of the conduc-
tor in the z and y directions. Each channel thus sees a
different potential barrier, and if the spacings between
the potential barriers are large compared to the region,
where tunneling through the barrier is important, we will
always have an integer number of open channels. We will
thus see a conductance of Nypen(2€2/h), where Nopen is
the number of states for which the Fermi energy is larger
than the maximum value of the potential V., . For a
given form of the constriction the latter is given by the
minimum cross-sectional area through L; and L,.

A more detailed theoretical description will have to in-
clude tunneling and reflection at the barrier and coupling
between different channels due to nonadiabatic effects.
Assuming that the constriction shape L(z) is Gaussian
with a width of ¢ and a maximum amplitude AL and a
minimum value of Ly the energy window in which tun-
neling is important is AE = (2h%/2m) ;Arfg- From the

simulations we find that a is typically 15 A, which means
that tunneling only plays a minor role for the geometry
considered here. This can be seen in Fig. 3 which con-
tains the calculated conductance both without and with
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tunneling included [13]. The coupling between the differ-
ent channels can also be estimated [14]. If (dL/dz) A < L,
where A is the de Broglie wavelength of the scattering
electron, then the coupling is negligible. This inequality
is well obeyed for the form of L(z) deduced from the sim-
ulation. We have checked this and the description of the
tunneling given above by performing full coupled channel
calculations of the conductance.

The simulations shown in Fig. 3 describe the experi-
mental results of Fig. 2 in several ways. First, the quan-
tized nature of the conductance is clearly seen. Second,
the typical step size is the same, that is, most steps are
one or two units of 2e2/h (as opposed to the simulations
of Todorov and Sutton [9]), and, third, the length scale
of the stretch per quantum unit is the same. The latter
point clearly demonstrates that the cross section of the
nanowire in the simulation and the contact in the experi-
ment are the same, and thus shows that the point contact
in the experiment consists of between one and ten atoms.

For the neck diameters of 5-10 A seen in our simu-
lations a typical energy spacing between the transverse
levels is of the order 0.2-1 eV or several thousand K. In
comparison the same energy spacing in a 250 nm constric-
tion in a semiconductor device is 0.1 meV corresponding
to 1 K. Temperature effects on the quantization of the
conductivity in the STM contacts are therefore expected
to be small at least to the melting point of the metals
involved.

Although the model we use is quite different from the
one-band tight-binding model used by Todorov and Sut-
ton [9] to calculate the conductance, the result is essen-
tially the same. We also find that the conductance per
atom is of the order a little more than half a unit of 2¢?/h
and that the cross-sectional area of the contact decreases
quite abruptly as the wire is stretched. The additional
feature of our modeling is that it allows us to understand
the origin of the quantized conductance better. It is clear
from the analysis above that the quantization is not di-
rectly related to mechanical instabilities giving rise to the
jumps in the contact area as suggested by Todorov and
Sutton [9]. Such a correlation might be suggested from
Fig. 3, but from Eq. (2) it is clear that the quantized
nature of the conductance as a function of the stretch of
the contact will exist for any decreasing transverse length
scale of the neck irrespective of the exact nature of the
mechanism behind it.

The simple rectangular model leading to Eq. (2) sug-
gests that the form of the cross section of the neck will
define the exact quantization of the conductance. This
first of all suggests that the sequence of quanta should
differ from one experiment to the next because the form
of the neck is the result of diffusion processes which can-
not be controlled on the atomic scale. This is in clear
accordance with our observations. It also suggests that
in some special cases where the two length scales of the
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neck are approximately equal new degeneracies should
occur. Such examples are indeed found in our experi-
ments. In Fig. 2 we show an indentation curve on a
O/Cu(100) surface. In this case we observe the quan-
tum levels of Nopen = 1,3,4,6,8. .., which is exactly the
series expected for a quadratic channel.

In summary, we have given clear experimental evidence
for a quantized conductance in metallic point contacts
formed between an STM tip and a metal surface at room
temperature. By combining the experimental observa-
tions with dynamical modeling of the stretching of the
contact and a Landauer-type theory for the conductance
we show that the quantization of the conductance is due
to the quantization of the transverse electron motion in
the contact consisting of between one and ten atoms only.
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