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Coulomb EfFects in Transport Properties of Quantum Wires
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The Coulomb 1/r interaction plays an important role in quantum wires. We study the interplay
between this long-range interaction and impurity. For a single band quantum wire, we find that
the transport properties are strongly modified. The linear conductance 0 is found to vanish with
temperature as G ~ exp[—vtn I (1/T)] and the current voltage characteristics acquires a thresh-
oldlike behavior. The possible extension of the theory to the case of many-band quantum wires is
discussed.
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The recent progress in the submicron-size technology
made it possible to fabricate very clean quantum wires,
where only a few (even one) electron channels are popu-
lated, and where only several impurities or defects are
efFective [1]. In this situation Anderson's localization
does not occur. Nevertheless, there is theoretical evi-
dence that, even in the presence of one single impurity,
repulsive electron-electron interaction leads to a conduc-
tance that vanishes with temperature [2—4]. Previous
studies have dealt with short-range interaction, which
was shown to lead to a conductance G T~, where p
is a nonuniversal exponent. The assumption of a short-
range repulsion is, however, justified only if Coulomb in-
teraction is efficiently screened, e.g. , by the vicinity of
metallic environments, but this is not the case for many
experimental setups (see, e.g. , Ref. [5]). The role of un-
screened Coulomb repulsion was recently explored in a
clean 1D system by Schulz [6], who discussed how the
Wigner crystallization arises from long-range repulsion.

In this paper, we address the following question: Does
Coulomb repulsion modify the transport properties in
presence of an impurity, and how? We show that the
conductance is indeed drastically affected by a long-range
repulsion, and vanishes with temperature faster than any
power.

We study a 1D electron gas with Coulomb 1/r repul-
sion. It is known that the low-energy physical proper-
ties of the 1D electron gas are quite different from those
in higher dimensions [7]. There are no coherent single-
particle excitations but only collective charge and spin
sound modes, which are dynamically independent (so-
called spin-charge separation). These sounds were re-
cently measured by light scattering in quantum wires [5].
A helpful analogy is to imagine these density fluctuations
just as sound waves in an elastic string. The method of
connecting the original description of the system in terms
of electron creation and annihilation operators and the
description in terms of the only existing coherent excita-
tions (charge and spin sounds) is known as bosonization
[7,8]. According to this method, the electron annihilation
operator can be written as
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In terms of bosonic fields, the charge excitations are de-

scribed by the Hamiltonian [6,8]

c = dX 1+gy c+ 1 —gy c
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where vF is the Fermi velocity, gi is the strength of the
interaction at 2kF transferred momentum. The momen-
tum II„conjugate to p„is related to the current density
by I(z) = evF /2/z (1 + gi)II, (z). The potential U(z)
is the matrix element of the three-dimensional Coulomb
interaction e2/~r with respect to the transverse eigen-
function of the lowest band in the confining potential;
~ is the dielectric constant. The potential behaves as
U(z) 1/lzl at large z while it approaches a finite value
for lzl smaller than the width l of the confining poten-
tial, so that at small transferred momentum q, its Fourier
transform is U(q) = (2e /z) ln(1/lqll). The singularity
at small q of the potential leads to a nonlinear dispersion
relation of the charge sound mode (plasrnon)

~.(q) = v~lqlV'(1+gi)[1 —gi+2U(q)/~»] (3)
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where o =t', J, labels the spin. The bosonic phase fields
are related to the low-momentum electron densities by

& (z) = +1/z gp (z) and 'pe (z) = II (z), where II
is the momentum conjugate to P . The phase fields,
corresponding to the charge and spin density excitations,
are defined by
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where a = e2/~vF is the dimensionless Coulomb coupling
constant. For repulsive interaction, the spin excitations
are described by a Hamiltonian H, of a form similar to
Eq. (2) but without the long-range part of the Coulomb
interaction. Therefore the spin sound mode a, (q) main-
tains a linear dispersion relation at small q.

In the presence of impurities, the total Hamiltonian
contains an additional term

Hi ~ = dzV(z)) 4't(z)@ (~).
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where u„=27rnT, and the spectral density J is defined
as

J. (~ ) = —(4.(c,~ )4.(—c, —~ ))
6Q

K„(~„)

For short-range interaction, K,(,&(~„—+ 0) is a finite
constant which determines the low-energy behavior of the
charge (spin) 2k+ density-density correlation function.
As a result of the divergent charge sound velocity for
long-range interaction [see Eq. (3)],K,(u„)vanishes with
~„—+ 0 and the spectral density behaves as

J,(u)„) fez„]Q—ln ]u)„[,

while K, (cu ~ 0) is finite.

We consider the case of a single impurity which is rep-
resented by a short-range potential V(z). By means of
Eq. (1), we express the potential scattering in terms of
the bosonic fields [2]:

p (p p P p ) ) U eos( ~2vrng, p) cos(v 27rmg. p )
Aim
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Here P,(,&p is the charge (spin) field at the impurity site,
and the integers n and m are such that n+m is even. The
term Vi i is the single-electron backscattering, Eq. (4).
The terms with n g 1 or m P 1 describe multielectron
scattering processes at the impurity site. They are not
actually present in (4), but, since they are generated by
perturbation theory, they should be included in the ef-

fective Hamiltonian as explained in Ref. [2].
Following Refs. [2,3], we express the partition func-

tion Z = Spexp( H/T), wit—h H = H, + H, + H;~r, as
an imaginary-time path integral over the bosonic fields.
Then we integrate out all the degrees of freedom, except
those at the impurity site. After this integration, the free
part of the action as a functional of the fields P,p(7) and

P,p(7) at the impurity site [0 & ~ & 1/T] takes the form

The total action [9], which we obtain by integrating
out all the degrees of freedom away from the impurity
site, can be written as

~[y.o, 4.o] = So[4.o, 4.o]

In order to analyze the low-temperature behavior of the
model, we make use of standard renormalization group

(RG) methods. In the ioeak barrier limit, it is straight-
forward to obtain first order scaling equations for the
effective potentials:

dP„' ~(() " 3n2v m K, ]

d( "' 4v( 2 J

where ( = ln (1/T) ~ oo and v = (2/3) g(1+ 9i)&/4&
It is important to realize that V„ogrows under RG scal-

ing process, independently of the precise values of the pa-

rameters entering the equations, in contrast to the case
of short-range interaction studied in Refs. [2,3].

As the impurity potential Bows towards strong cou-

pling, a perturbation expansion of the conductance in

powers of the potential is not justified, since the impu-

rity corrections diverge [10]. Therefore we have to resort
to nonperturbative methods. One possibility has been
recently devised for the short-range interaction case by
Matveev, Yue, and Glazman [4], but it relies on weak
interaction. This is, however, usually not the case for
real systems where Coulomb interaction n is of the or-

der of unity [1]. Therefore it is more appropriate to
start from the opposite lirmt [2,3] of a strong barrier.
In this limit we have to minimize the impurity poten-
tial Eq. (5) first. It has an infinite number of equivalent

minima, which are related by a shift (n, m) of the fields

(P p, P p) ~ (P p+n/7r/2, P,p+m/7r/2), for n+m even

The kinetic term allows the fields to tunnel. The tunnel-

ing events, which produce the shifts (kl, kl), have the

physical meaning of transferring a single electron through
the barrier. Similarly the shifts (+2, 0) represent the
transfer of a singlet pair of electrons. The generic shift

(n, m) corresponds to multielectron tunneling process.
The probability P(n, m) of tunneling between two min-

ima, connected by the shift (n, m), can be calculated in

a standard way by the Fermi golden rule. We will not
write the full expression for P(n, m) since it is quite cum-

bersorne, but only its leading low temperature behav-
ior P(n, m) exp[—vn~ In ~ (1/T)]. An applied electric
Geld lifts the degeneracy between those minima in the
direction of P,o. The tunneling processes which transfer

one charge unit [shifts (l, m)] give the dominant contri-

bution to the electric current. Without presenting the
detailed calculations, we simply quote the results for the
linear conductance and current voltage characteristics

(IV):-
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G(T) exp[—vln ~ (Tp/T)],

I(V) exp[—vln ~ (Tp/eV)].

The cutoff Tp is typically of the order of the bandwidth,
and Eq. (10) holds for ln(Tp/T), ln(Tp/eV) » 1 [11).

It is worth noticing that already the clean system static
conductance Gp is strongly affected by Coulomb forces.
It is well known that G'0 is proportional to the product of
the charge sound velocity and the compressibility. In the
limit of infinite wire length I, the charge sound velocity
diverges, but the compressibility vanishes faster (the sys-
tem is almost incompressible). As a result (5 = 1 in the
chosen units)

8 38P
Gp = lim —K, (~) =

2z gin(l /L)

is logarithmically suppressed for long wires.
These results are not just limited to the case of one sin-

gle band but can be extended to the situation where M
transverse bands with difFerent Fermi velocities v~„are
populated The. system is described by the charge (spin)
fields P„,(,), n = 1, . . . , M, which are coupled together
by the interaction. As before, the Coulomb repulsion
affects only the charge fields giving rise (for small trans-
ferred momentum) to a singular coupling of the form

The large transferred momentum part of the interaction
cannot be written simply as a quadratic form of the fields
and in general couples together charge and spin fields.
However, as a first step we consider just the singular
coupling Eq. (12). Then the Hamiltonian (without im-

purity) can straightforwardly be diagonalized. In this
approximation the spin sound modes maintain their bare
velocities v~„.Among the M charge sound modes only
one, the plasmon, is strongly affected by the interaction

4ez 1n(1/]q]l) )7lK V

with the average Fermi velocity v = (1/M) Q„vF„.
We analyze the effect of the impurity potential

H;~r (fP„„pj) analogously to the single band case. In
the weak barrier limit, we can show that the impurity
is again a relevant perturbation. However, contrary to
the single band case, if we included the high transferred
momentum interactions, this result could change, as it
depends on the low-energy properties of al/ modes, and
not simply on the existence of a plasmon mode with a sin-
gular dispersion relation. The crucial difFerence is that
the term cos (v 8z PP„~)does not occur in the bare
impurity potential H;~~ for M & 1 according to stan-
dard bosonization rules [8], although it is generated in

Mth order of perturbation theory. Because of this com-

plication, we cannot make a definite statement concern-

ing the relevance of the impurity potential in the general
case [12]. On the contrary, in the strong barrier limit the
situation is completely analogous to the one-band case.
The single plasmon mode completely determines the low-

temperature behavior of the electric current. The results
are similar to those given by Eqs. (10) with the replace-
ment v ~ v/v M, and they are valid in a narrow low

temperature range shrinking with M ~ oo at least as
1/M.
In conclusion, we have shown that a long-range interac-

tion does modify the transport properties of a single band
1D electron gas, leading to the results Eq. (10), indepen-
dently of the details of the model. At low temperature,
such an anomalous behavior of the conductance, should
also persist in the case of many populated bands, at least
for strong impurity potential. Because of the Coulomb
forces, already the conductance of the pure system is log-
arithmically suppressed, Eq. (11). The latter would be
difficult to observe, since it would require the comparison
of measurements on samples of difFerent lengths. On the
contrary, we expect that the peculiar temperature' depen-
dence of the conductance, arising from the interplay of
the Coulomb interaction and the impurity, could more
likely be observed experimentally. As regards to the I
V characteristics, the strong vanishing of the current at
small voltage found above, Eq. (10), is consistent with
the threshold behavior reported in Ref. [13].

We are grateful to A. Dyugaev for interesting discus-
sions.
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