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The dynamic behavior of the L-H transition in the ASDEX-Upgrade tokamak is described. We focus
on the periodic L-H-L transitions known as "dithering H mode" and show that there is an intrinsic time
scale in this process which is characteristic for the L-H transition. We give a tentative explanation for
the phenomenon using an extension of Itoh s model for the L-H transition and find that this simple bifur-
cation model can qualitatively explain many of the experimental observations. According to our model,
the dithering cycles are a limit cycle oscillation due to a difference in the response of the system to a rise
in either T or n. The implications for H-mode theories are discussed.

PACS numbers: 52.55.Fa, 52.55.Pi

The H mode [I] is one of the most promising regimes
of enhanced confinement for future large fusion devices.
Although progress has been made in characterizing and
understanding the L-H transition [2], the physics of the
process is not yet fully resolved. The aim of this Letter is

to show that bifurcation models for the L Htrans-ition
can be tested against experimental results by applying
them to the dynamic behavior of the L-H transition.

The L-H transition occurs when the heating power P
exceeds a given threshold Pth, . The most prominent indi-

cator for the transition to the high confinement state is

the reduction of the D, light in the divertor, indicating a
reduced flux of particles and energy out of the plasma.
The threshold increases linearly with n, B, and seems to
be related to the power flux across the plasma edge [3].
In various tokamaks, at the po~er threshold, a sequence
of L-H-L transitions is observed prior to the final transi-
tion into the H mode. This phenomenon is known as
"dithering H mode. " In the following, we will experi-
mentally characterize this phase on the ASDEX-Upgrade
tokamak and compare the observations to a theoretical
model.

The number of dithering cycles to appear at the transi-
tion varies with the rise of power flux into the plasma at
the transition. Figure 1 sho~s two examples from
ASDEX-Upgrade, in which the dithering cycles can be
seen as a modulation of the D, signal in the divertor.
Both shots are run in the lower single-null configuration
with the ion VB drift towards the X point (i.e., "favorable
drift direction") with a 0.5 m, R=1.65 m, elongation

1.6, and deuterium as the working gas. In the first
case (8, = —2 T, 1~=1.2 MA, n, =5x10' m, Pth,
=2 MW), neutral beam injection (NBI) heating (H )
of 5 MW is applied in a step function (upper traces of
Fig. I ). The absorption of power in the plasma is

governed by the slowing down time of the fast ions which
is typically of the order of 10-20 ms. The flux from the
core through the edge rises on the (longer) time scale of
the global energy confinement time r E. In order to com-
pare different cases, we therefore characterize them by
the normalized rise of power in excess to the threshold di-

vided by the rise time or, if longer, by rE, i.e., P,„,
=(I/P, h, )d(P Pth, )/—dt. As rF. = 120 ms for the case
shown, we have P«, ——(50 ms) '. With this fast ramp
rate, few cycles appear. The opposite case is the ion cy-
clotron resonance heating (ICRH) discharge [8, = —2 T,
1&=0.6 MA, n, =3 X10' m, Pth„=1.2 MW, D(H)
minority heating] shown in Fig. l. Here P,„,= (I s)
and dithering cycles are seen for 100 ms (lower traces of'

Fig. I ).
In the limit of P,„,0, which eventually occurs in

Ohmic H-mode discharges [3], a series of dithering cycles
of very regular frequency (= 1-2 kHz in ASDEX-
Upgrade at lp =0.8 MA, 8, —1.35 T) appears for the
whole H phase of 2-3 s (i.e., =6000 cycles) [4]. Long
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FIG. 1. L-H transition with a different rise of heating po~er:
P„,= (50 ms) ' and P„,= (I s) '. Note the diA'erent time
axis.
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dithering phases (up to 100 ms) at heating power close to
Pth, have also occurred using N BI, but, so far, the sta-
tionary but dithering H mode was only seen in Ohmically
heated plasmas. The dithering cycles are sometimes also
referred to as "grassy edge localized modes (ELMs),"
but, as has been shown on ASDEX [5], do not show the
typical magnetohydrodynamics signatures of type I I I

ELMs (which also appear close to Pu„). In the dithering
phase, confinement only marginally improves (=10%
above L mode); this also is a remarkable difference to
ELMy discharges which typically show an improvement
of 1.5-1.8 with respect to the L mode.

We have shown that the number of dithering cycles to
appear depends on the ramp rate of the heating power in

excess of Pih„. The frequency of the cycles, however,
shows only a weak variation with plasma parameters or
heating power and is roughly constant at 1-2 kHz. Only
for shots with long dithering phases and a slow evolution
towards the final H-mode transition, one can observe the
frequency to vary by a factor of = 2. This can be seen in

the D, trace of shot 2326 in Fig. 1. Note that during the
temporal evolution, also the shape of the D, signal varies.
We will give an interpretation of this phenomenon below.

These experiments show that there is an intrinsic time
scale in the L-H transition. In the following we will give
a tentative explanation of this time scale and show how

the various experimental results can be interpreted in

terms of this approach. In order to model the dynamics
of the L-H transition, we extend the model proposed in

[6] based on a multivalued curve of the poloidal rotation
or, in this approach equivalently, the radial electric field
Z. The system was shown to exhibit so-called limit cycle
oscillations, i.e., an oscillating solution between the static
L- and H-mode regimes. This model is essentially
(nt =0, n =0), which is justified by the experimental ob-
servation that the L-H transition is uniform around the
torus within our temporal resolution of 11 ps. The spa-
tial structure of the microscopic fluctuations that are
suppressed at the transition, however, cannot be resolved

by our fluctuation measurements.
Transport equations are derived from mass conserva-

tion Bn/8t = —VI +S where n is the particle density, I
the particle flux, and S a source term representing local
sources (e.g., ionization). Energy conservation reads
8/Bt( 2 nT) = —Vq+Q where T is the temperature, q is

the heat flux, and Q represents a local energy source
(e.g. , ICRH heating). Fluxes are considered to be
r= —DVn and q

—ngVT+ 2 Tt where D is the parti-
cle diffusivity, g the heat conductivity, and we have not
considered explicit drift velocities. Under the assumption
S=Q=O, i.e., no sources in the volume considered, the
variation of density and temperature is then (in one di-
mension) given by

Bn(x, t) 8 ( ( )) 8n(x, t)
r)t Bx Bx

aT(x, t) a 2 aT(x, t)

~ 1 2 +D r)n rIT+——~+a
n 3 Bx 8X

(2)

The temporal evolution of the poloidal rotation or the
radial electric field Z is given by

BZ(x t) 0 Z + O'Z(x t)=0= —1V Z,g +p (3)

N(z, g) is a nonlinear term that introduces the bifurca-
tion:

w(z, g) =g —g)+(pz' —az), (4)

where the so-called gradient parameter g is given by [7]

D(Z) =
2 (D,„+D;„)+2 (D,„—D;„)tanhZ. (6)

A similar equation is used for g(Z). Here D,„,g,„cor-
respond to L-mode conditions and D;„,g;„to the H
mode. A typical set we use is Dm,.„=1 m /s, Dm;„=O.l
m /s, and g =3D.

Similar to [I], we find that a transport barrier, i.e., a
zone where of radial extent h, in which transport is re-
duced, develops in the H mode. The width 5 is governed
by p. The difference from [1] is that we include the tem-
poral and spatial variation of the temperature; as will be
shown below, this is a necessary ingredient to describe the
experimental observations. We solve Eqs. (I), (2), and
(3) simultaneously on a spatial domain extending over

g =const & —+ y =go——+ y . (5)
1 n' T' T n' T'

p&, y; f1 T P1 t/ T

The prime denotes the derivative with respect to x; go, gI,
and the Z-dependent term are chosen to analytically ap-
proximate the multivalued solution of poloidal rotation
versus force [8] (or, as pointed out in [9], electric field
against radial current) in the presence of a radial current
(as is the case for electrode biasing experiments) or ion
orbit losses and other mechanisms leading to a nonambi-
polar radial flux. This means that Z(g) is single valued
for g (gt, and g )gH whereas in between, three solutions
of the cubic equation exist. Because of the symmetry of
the cubic curve, the relation (g —g ~ )t. = —(g —g ~ )H

holds.
The zero in Eq. (3) comes from the assumption that

the profile of Z adjusts to changes in N on a much faster
time scale than the plasma profiles and manages to keep
the net radial current out of the plasma to zero. The
coefficient p is the difl'erential viscosity between flux sur-
faces. Because of this term, the radial electric field can-
not arbitrarily vary between neighboring flux surfaces.
For p =1 m /s (which is of the order of experimental
values [10]), the final profile Z(x) is always a straight
line.

The transport properties of the H mode are modeled by
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= 2-3 poloidal ion gyroradii, i.e., from x =0 at 2 cm in-
side the separatrix up to the separatrix. As has been
shown [lj, the radial extension of the domain does not
influence the width of the transport barrier. The bound-

ary conditions are 1;„=constand q;„=const at the left
boundary (representing the fluxes from the plasma core
into the domain) and I/A, „=n'/ n=const and I/A. T
=T'/T =const at the separatrix. The boundary condi-
tions for Eq. (3) are N(Z, g) =0 at both boundaries.

From the equations above, we can understand the dith-
ering cycle as follows: In the L mode, gi & g, so

g —gi (0 so that Z & 0 and D =D,„(i.e., L-mode con-
ditions). If, as done in the experiment by heating, we in-

crease q;„,the temperature gradient rises and, for g & gH,
we transit into H mode (Z & 0, D =D;„).The reduc-
tion in transport coefficients leads to an increase in both
density and temperature gradients. From Eq. (5) it can
be seen that the response in g to a change in n and T is

different: With our boundary conditions, n„~=X„n'and

Tsar XTT', so g &ee T/n holds. A rise in T drives the
system further into the H mode whereas the rise in n

drives it back towards the L mode. The initial change in

n can be estimated using

8n 8D an+D 8 n

at 8x ax
(7)

At the L-H transition, the main change in n comes
from the first term on the right-hand side (RHS). Using
the boundary condition, we arrive at

an 8D (8)
n$ap ar ax Xn

A similar equation can be derived for Tm&. The neces-
sary condition for dithers to appear is dg~gdt (0 after
the transition. Replacing 8D/8x by (D,„—D;„)/4and
ag/ax by (g „—g m)/6, where A is the typical width of
the transport barrier, we arrive at the necessary condition
for the dithering cycle

1 2 1
(Dmax Dmin) & (Zmax @min) (9)

~n 3 AT

(note that this is not a sufficient condition as g may de-
crease, but, depending on the choice of go and gi, never
reach the value gL where it transits to the L mode again).
For small ramp rates of the heating power, dithers may
be expected using experimental values [21 of X„=1 cm,
X,T = 3 cm, g and D as mentioned above. If g decreases
below gL, the system will go back to the L mode, then de-
crease the density gradient and go into the H mode again.
This happens until the heating (increase in q;„)finally
overcomes the decrease in g due to the steepening of the
density gradient and the system stays in the 0 mode.

In order to correctly describe the dynamics of the cy-
cle, we have to consider another time scale:- Once the
barrier is established, the first term on the RHS of Eq.
(7) vanishes and normal diffusion (second term on the
RHS) becomes dominant. The rise in n is now governed

n(r) =nr. +(nH —
ng )(1 —e

' '"),—t/z„ (10)
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FIG. 2. Temporal evolution of q,„~,the power Aux at the
separatrix, and g —g[, the gradient parameter, in response to
diAerent ramp rates of q;„.Upper traces: Ramp from the L to
H mode in l0 ms; lower traces: ramp from the L to 0 mode in

50 ms. Note the difkrent time axis.

where r„=A/Dm;„ is the diff'usion time in the barrier
and the values nL, n~ are the steady state edge values in

the H mode or L mode: in steady state, I;,=I,„iand we
have n n=l';nXn/D„n. It is this time scale that governs
the evolution of g after the initial jump introduced by the
change in D. Similar equations hold for the response of T
to the jump in g.

The time scale of the dithering cycle is thus given by
the time it takes to change the gradients in the transport
barrier region. In our simulations, this is typically a
width of 1 cm at a diff'usion coefficient in between O. l

and 1 m /s. From this, a typical time scale of 1-10 kHz
results which is in the range of the experimental observa-
tion.

%e now consider the effect of the heating power: The
ramp in q;„leads to a continuous rise in T and drives g
into the region g&gH, i.e., into stationary H mode. If
the temperature rise rate is small compared to the fre-
quency of the dithering cycles, lots of dithers are ob-
served, for a fast rise, only few dithers appear. This ex-
plains why the number of cycles depends on the power
ramp rate as shown in Fig. I. Figure 2 shows the tem-
poral evolution of the gradient parameter and the power
flux out of the plasma obtained from modeling for two

224
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different ramp rates.
With a slow rise in heating power we are also able to

reproduce the experimental observation of the shape of
the D, trace. This can be demonstrated with the upper
traces of Fig. 2. At the first L-H transition, g decreases
quickly from gII to g~,. in the subsequent transitions, this
time scale gets slower and slower. The reason for this is a
difference of the temporal evolution of n and T due to Eq.
(10). For t/r„&&1,the rate of change of n is given by

n/nt ——(Ntt/nt. —I )/r
„

with a similar equation for T. During the cycle, T rises
due to the change in q;„. With each cycle, the steady
state values increase: T~ T~, Tl. TI* where the as-
terisk denotes the value in the next cycle. As Tz and TI
are increased by the same factor (ccq;„),we find Ttt/Tt.
=Ttt/Tt. , and the relative rise in T is always the same.
On the other hand, the increase in T means that at g~,
ni*. ) nt. holds (remember gtt ~ T/n =const). On the
other hand, there is no increase in ntt (I;„=const);this
means ntt/nt. (ntt/ni. and the relative rise of n gets
smaller until finally g )gt, is always fulfilled. The
change in the rise rate of n leads to the observed change
in the signal shapes allowing for longer and longer H
mode phases.

We have shown that, with a simple bifurcation model,
we can reproduce the experimental signatures of the dy-
namics of the L-H transition. For this, we used the num-

bers go and gt as free parameters. These two parameters
determine the width of the bistable region of the gradient
parameter g. Thereby, the frequency of the dithering cy-
cles is determined. In our modeling, we chose go and g~
in order to match the experimentally observed frequency.
In this parameter regime, the time scale of the dithering
cycle is determined by diffusion across the width of the
transport barrier rather than by the magnitude of the

jump in the transport coefficients at the transition. No
attempt was made to compare our values of go and g~ to
existing theories; this remains a further issue for a more
detailed study.

In order to correctly include the physics of the L-H
transition, the following points may be subject to further
discussion: While the modeling of the heating power as a
flux from the core is a reasonable assumption, this is

different for the particle flux: The particle sources in the
edge region are not negligible and their dependence on

the plasma parameters, especially at the I-H transition,
might lead to changes in the dynamical behavior of the
system. Also, the change in edge parameters at the tran-
sition might influence the loss of fast particles from the
edge, thereby changing the shape and/or extension of the
bifurcation curve. Finally, we have not included a
specific transport model; it is now widely believed that the
reduction of fluctuations in the edge is responsible for the
improvement of D and g, however, this effect should rath-
er be governed by the shear in the radial electric field
than by the value of Z itself. Also, in our model, the
reduction in transport appears instantaneously after the
system has reached g =gtt. Here, physics understanding
of the process might introduce a new time scale. Howev-
er, the fact that our simplified model reproduces many of
the experimental results shows that the necessary in-

gredients are the bifurcation itself and the dependence of
transport on the gradient parameter g in the form of Eq.
(5). It remains a further challenge for theory to derive
these ingredients from first principles.
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