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Prediction of an Expanded-to-Condensed Transition in Colloidal Crystals
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Monte Carlo simulations show that a system of hard, spherical particles with a short-ranged
attractive interaction, can undergo a first-order transition from a dense to a more expanded solid
phase with the same structure. This phase transition is analogous to the liquid-vapor transition in
systems with longer-ranged attractive forces. In particular, the solid-solid transition terminates in
a critical point. We argue that this phase transition should be experimentally observable in certain
types of colloidal crystals.

PACS numbers: 64.70.Kb, 61.20.Ja, 82.70.Dd

Since the work of van der Waals, we know that there
is no essential distinction between a liquid and a vapor:
above the critical temperature T„avapor can be com-
pressed continuously all the way to the freezing point.
But below T„afirst-order phase transition separates the
dilute fluid (vapor) from the dense fluid (liquid). Yet,
although the van der Waals theory becomes exact in the
limit of weak, long-ranged intermolecular interactions [I],
there is no fundamental reason why the liquid-vapor tran-
sition should occur in every atomic or molecular sub-
stance, nor is there any rule that forbids the existence
of more than one fluid-fluid transition. Whether a given
compound will have a liquid phase, depends sensitively
on the range of the intermolecular potential: as this
range is decreased, the critical temperature approaches
the triple-point temperature, and when T, drops below
the latter, only a single stable fluid phase remains. This
phenomenon is well known in mixtures of spherical col-
loidal particles and nonadsorbing polymer, where the
range of the attractive part of the efFective colloid-colloid
interaction can be varied by changing the size of the poly-
mer [2—4]. Experiment, theory, and simulation all sug-
gest that when the width of the attractive well becomes
less than approximately one-third of the diameter of the
colloidal spheres, the colloidal "liquid" phase disappears.
In fact, there is numerical evidence that in a molecular
compound (Cse), the range of the intermolecular attrac-
tion may be sufficiently short to suppress the liquid-vapor
transition [5].

In this Letter, we consider what happens in colloidal
systems with a very short-ranged attraction, where the
liquid-vapor transition is absent. Below we show that
these systems may exhibit a novel type of solid-solid tran-
sition that is in many ways reminiscent of the liquid-
vapor transition: in particular, (1) the transition takes
place between two phases that have the same structure,
(2) the line of (first-order) solid-solid transitions ends in
a critical point, and (3) the transition depends strongly
on the range of the intermolecular attraction. In what
follows, we use the so-called square-well model to de-
scribe the colloid-colloid interaction. In this model, the

intermolecular potential is of the following form:

U(r) = oo,

=0,

where o denotes the diameter of the colloidal particle, e

the depth of the attractive well, and 6 its width. This
model, although simple, should provide an adequate de-
scription of a wide class of uncharged colloidal particles
with short-ranged attraction.

Before presenting our simulation results, we first
present an intuitive argument why the square-well model
system might be expected to exhibit an isostructural
solid-solid transition. To this end, we compare two sit-
uations: one is the expanded solid close to melting, the
other is the dense solid near close packing. To a first ap-
proximation, we can describe the solid by a simple "un-

correlated" cell model [6,7] in which it is assumed that
every particle moves independently in the "cell" formed

by its neighbors. We denote the radius of this cell by a.
For sufficiently short-ranged potentials, the solid can be
expanded to a density where a is much larger than 6, the
width of the attractive well. In that case, a given par-
ticle can have at most three neighbors within the range
of its attractive well, although the average number will

be far less. In contrast, once the density of the solid is
so high that a ( 6, then every particle interacts with
all its nearest neighbors simultaneously. This leads to a
fairly abrupt lowering of the potential energy of the sys-
tem. At low temperatures, this decrease of the energy
on compression will outweigh the loss of entropy that is
caused by the decrease of the free volume, the Helmholtz
free energy mill exhibit an inflection point, and a first-
order transition to a "collapsed" solid will result. In fact,
we can analytically compute the phase behavior of this
cell model where every particle moves in a dodecahedral
cell formed by its neighbors [8]. These calculations in-
dicate that, for suKciently short-ranged attractions, a
first-order solid-solid transition should take place. The
cell model predicts a very simple relation between b, the
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range of the attractive well, and the critical density of
the solid-solid transition:

where po denotes the density of the solid at regular close
packing. Below, we shall compare this prediction with
our simulation results.

Of course, cell-model calculations only provide a hint
that there may be an isostructural solid-solid transition.
The real test comes from direct Monte Carlo simulations
of the square-well solid. In order to compute the phase
diagram, we first must determine the dependence of the
Helmholtz free energy of the solid on density and tem-
perature. As the free energy of the solid cannot be mea-
sured directly in a Monte Carlo simulation, we use ther-
modynamic integration to relate the free energy of the
square-well solid to that of a hard-sphere solid at the
same density [9):

+(p, s') = &Hs(p)+ , f'BF'l
(as' )

= +Hs+ .(E)..

where s' is the reduced well depth s/k~T and (E), the
average internal energy of the system, a quantity that
can be measured in a Monte Carlo simulation. The free
energy of the hard-sphere solid is well known and is ac-
curately represented by an analytical form proposed by
Hall [10]. The presence of a first-order phase transition
is signaled by the fact that the Helmholtz free energy
becomes a nonconvex function of the volume. The den-
sities of the coexisting phases can then be determined by
a standard double-tangent construction.

In order to map out the phase diagram of the square-
well solid for a wide range of densities, temperatures,
and widths of the attractive well, several thousand in-
dependent simulations were required. To keep the com-
putational costs within bounds, we chose to simulate a
relatively small system consisting of 108 spheres. With
such a small system size, finite-size efFects are expected,
in particular in the vicinity of a critical point. However,
away from critical points finite-size efFects should be so
small that they will not afFect the conclusions that we
draw below. All our simulations were performed on a
face-centered cubic (fce) solid, because this is the stable
solid structure both for the hard-sphere and the square-
well model [11]. In what follows, we use reduced units,
such that e/k~ is the unit of temperature, and a, the
hard-core diameter of the particles, is the unit of length.
The simulation box was chosen to be cubic and peri-
odic boundaries were applied. The densities ranged from

p = 0.9 which is below the hard-sphere melting point to
p = 1.414 which is aLmost at close packing (po = v 2).
The temperature of the system was varied in the range
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FIG. l. Solid-solid coexistence curves of square-vreQ sys-
tems in the T, p plane. From left to right: 6' = 0.06, 0.04,
0.02, 0.01, 0.005, and 0.002.

0 ( 1/T ( 2, in steps of 0.1.
For every value of the well width 6, we performed some

1000 MC simulations of 20000 cycles each. Simulations
were performed for 6 = 0.001, 0.002, 0.003, 0.004, 0.005,
0.01, 0.02, 0.03, 0.04, 0.05, and 0.06. In order to perform
the double-tangent construction on the Helmholtz free

energy, ail simulation data were fitted to an analytical
function of p, 6, and T [8]. Analysis of the fitted free en-

ergies showed that an isostructursl solid-solid transition
does indeed occur. Figure 1 shows the computed solid-

solid coexistence curves in the p, T plane. The density

gap between the dense and expanded fec solids is wide
at low temperatures, but shrinks to zero when the solid-
solid critical point is approached. The coexistence curves
are asymmetric, especially in the limit 6 -+ 0. Because
of the analogy with liquid-vapor coexistence, one might
think that the solid-solid critical point should be of the
SD-Ising universality class, although the behavior in the
limit 6' -+ 0 could be difFerent. In this limit, the reduced
critical temperature T, goes to a finite limiting value of
approximately 1.7. We stress that this limiting critical
temperature is a property of the hard-sphere solid at close
packing and it is tempting to speculate that, in this limit,
the critical properties may be computed analytically.

As can be seen in Fig. 1, the critical temperature de-

pends only weakly on b. In contrast, the solid-solid coex-
istence region shifts to lower densities as the well width is
increased. This efFect can easily be understood by noting
that a dense square-well solid can be expanded at virtu-

ally no cost in potential energy, up to the point where

the nearest-neighbor separation is 1+b. It is only when

the solid is expanded beyond this limit that the potential
energy increases steeply and a transition to the expanded
solid may occur. Hence, the larger b, the lower the den-

sity where the phase transition will take place. In fact,
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as can be seen in Fig. 2, the dependence of the critical
density on b is described remarkably well by Eq. (2), that
was based on the crude cell model mentioned above.

When 6 becomes large, the solid-solid transition will

disappear because it will be preempted by the melting
transition. We note that the melting behavior of a sys-
tem of hard spheres with a narrow but finite attractive
well, should be rather similar to that of a system of adhe-
sive spheres, i.e., hard spheres with an infinitely narrow,
but infinitely deep, square well. The melting line of this
latter model was recently estimated by Tejero and Baus,
using density-functional theory [12]. In fact, we cannot
directly compare Fig. 1 with the melting curve of Ref. [12]
because, for the adhesive-sphere model, e/k~T is infinite.
A comparison between square-well and adhesive-sphere
models is best made by defining a temperaturelike pa-
rameter ~ [13] that is related to the second virial coeffi-
cient:

7. = 1 (1 BAHS/BHS) —1 1 (1 BSQW/BHS) —1 (4)

where BP, BzAHs, and Bz~ denote the second virial
coefficients of hard spheres, adhesive hard spheres, and
square-well particles, respectively.

In Fig. 3, we have plotted the computed solid-solid co-
existence curves in a r-p diagram. The estimated solid-
liquid coexistence curves of the adhesive-sphere system is
indicated in the same figure. Figure 3 shows that for suf-
ficiently low values of 7, the solid-solid coexistence curve
will cross the melting line. This implies that, at low
temperatures, the expanded solid is no longer stable and
the dense solid coexists with the fluid. This may explain
the puzzling observation of Tejero and Baus [12] that the
(expanded) adhesive-hard-sphere solid becomes mechan-
ically unstable below r = 3. Figure 3 indicates that for

small values of b (b ( 0.01) the solid-solid transition oc-
curs well before melting. We have, in fact, performed
direct simulations of the melting transition for square
well models [8] and found that only when b ) 0.06 the
solid-solid transition is preempted by the melting transi-
tion.

It should be noted that isostructural solid-solid transi-
tions are known to occur in dense Cs and Ce [14]. How-

ever, in this case the intermolecular potential is too long

ranged to induce the mechanism described above and the
transition is believed to be due to the softness of the inter-
molecular potential associated with a pressure-induced
change in the electronic state of the metal ions. In fact,
theoretical work of Stell and Hemmer [15] and simuls

tions of Young and Alder [16] indicate that such softness
may indeed result in solid-solid transition. We stress that
the solid-solid transition reported in the present paper is
difFerent because it is not related to a pressure-induced
change in the effective size of the particles.

An obvious question is whether the isostructural solid-
solid phase transition due to short-ranged attraction,
which we report here, can occur in real systems. We be-
lieve that such a transition can be observed in uncharged
colloids with a short-ranged attraction. Such systems can
be made, for instance, by adding nonadsorbing polymer
to a suspension of hard-sphere colloids (for a review, see,
e.g. , Ref. [4]). The polymers induce an effective attrac-
tive force between the colloidal spheres. The range of this
attraction is directly related to the radius of gyration of
the polymer. Hence, a colloidal crystal to which a poly-
mer has been added with radius of gyration less than 6%
of the radius of the colloidal spheres, should exhibit the
solid-solid phase behavior of the models discussed in this
Letter.
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FIG. 2. Dependence of the computed solid-solid critical
density of square-well systems, as a function of the well width
b. The solid curve denotes the prediction of the uncorrelated
cell model.

FIG. 3. Simulated phase diagrlns in the r, p plane (see
text). The almost vertical curves near p=l indicated the es-
timated melting curve of adhesive hard spheres [12]. On the
right are the computed solid-solid coexistence curves. From
top to bottom: 6 = 0.001,0.002, 0.003, 0.004, 0.005, 0.01,0.02.

2213



VOLUME 72, NUMBER 14 PHYSICAL REVIEW LETTERS 4 AVR&L 1994

The work of the FOM Institute is part of the research
program of FOM and is made possible by Bnancial sup-
port from the Netherlands Organization for Scienti6c Re-
search (NWO). We thank M. Baus and C. Tejero for
sending us Ref. [12] prior to publication. We gratefully
acknowledge discussions with Henk Lekkerkerker.

[1] P.C. Hemmer and J.L. Lebowitz, in Gritica/ Phenomena
and Phase Pnansittons 5b, edited by C. Domb and M.
Green (Academic Press, New York, 1976).

[2] A.P. Gast, C.K. Hall, and W.B. Russel, J. Colloid Inter-
face Sci. 96, 251 (1983).

[3] E.J. Meijer and D. Frenkel, Phys. Rev. Lett. 67, 1110
(1991).

[4] P.N. Pusey, in Liquids, Prizing an, d Glass Znansition,
edited by J.P. Hansen, D. Levesque, and J. Zinn-Justin
(North-Holland, Amsterdam, 1991),p. 763.

[5] M. Hagen, E.J. Meijer, G.C.A.M. Mooij, D. Frenkel, and
H.N.W. Lekkerkerker, Nature (London) 865, 425 (1993).

[6] H. Eyring, J. Chem. Phys. 4, 238 (1936)ff.
[7] W.G. Rudd, Z.W. Salzburg, A.P. Yu, and F.H. Stillinger,

J. Chem. Phys. 49, 4857 (1969).
[8] P.G. Bolhuis and D. Frenkel (to be published).
[9] See, e.g. , D. Frenkel, in Molecular Dynamics Simulation

of Statistical Mechanical Systems, edited by G. Ciccotti
and W.G. Hoover (North-Holland, Amsterdam, 1986), p.
151.

[10] R. Hall, J. Chem. Phys. 57, 2252 (1972).
[11] In fact, the difference in free energy of the face-centered

cubic and hexagonal close packed (hcp) structures is so
small that it is not known which one is the more stable.
Our calculations ~ere performed for the fcc structure, but
the results would have been virtually the same for the hcp
structure. Other crystal structures (e.g. , simple cubic and
body-centered cubic) can be safely ignored because they
have a much lower msodmum packing density.

[12] C.F. Tejero and M. Baus, Phys. Rev. E 48, 3793 (1993).
[13] R.J. Baxter, J. Chem. Phys. 49, 2770 (1986).
[14] A. Jayaraman, Phys. Rev. 187, A179 (1965).
[15] G. Stell and P.C Hemmer, J. Chem. Phys. 56, 4274

(1972).
[16] B. Alder and D. Young, J. Chem. Phys. 7D, 473 (1979).

2214


