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Nonlinear Resonances and Chaotic Behavior in a Periodically Focused Intense
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It is shown that beam self-field effects induce nonlinear resonances and chaotic behavior in the en-

ve)ope oscillations of an intense charged-particle beam propagating through a periodic focusing field.
The resonance condition is derived and expressed in terms of the vacuum phase advance and the beam
perveance. Certain correlations are found between such resonant and chaotic behavior and well-known

instabilities in periodically focused high-current ion beams. The predicted nonlinear resonances and
chaotic behavior are expected to be observable in beam transport experiments in which there is a
mismatch between the beam and the periodic focusing field.

PACS numbers: 41.85.Ja, 05.45.+b, 29.27.Eg, 52.25.Wz

The physics of periodically focused intense charged-
particle beams has been studied since the late 1950s
[1-3]. The need for an advance in understanding has
intensified recently, because many advanced accelerator
applications, such as free-electron lasers [4], heavy ion

fusion [5], and nuclear waste treatment, require high-
brightness (i.e., high current and low emittance) electron
and ion beams. Several critical aspects of intense
charged-particle beam transport in a periodic focusing
channel have been investigated theoretically and experi-
mentally, including (i) exploration of the equilibrium [1l

and stability [2] properties of intense beams, (ii) intro-
duction of the concept of root-mean-squared (rms) emit-
tance [6-8], (iii) derivation of the rms beam envelope
equations [6,7,9], (iv) study of current intensity limits
[10], and (v) exploration of the emittance growth [11—
151 and beam halo phenomena. Despite these eff'orts, a
basic understanding of the physics of intense charged-
particle beam propagation in a periodic focusing channel
has not yet emerged, particularly in the regime where the
beam is mismatched into the focusing channel.

ln this Letter, we report two new phenomena in period-
ically focused intense charged-particle beams, namely,
beam self-field-induced nonlinear resonances, and chaotic
behavior in the beam envelope oscillations. In particular,
the evolution of the envelope of an intense beam in a
periodic solenoidal focusing field is studied. The Poincare
mapping technique is used to find the condition for beam
matching into the focusing channel and to explore the
nonlinear resonances and chaotic behavior in the envelope
oscillations of mismatched beams. The nonlinear reso-
nances, which can be classified in terms of the vacuum
phase advance and a scaled, normalized beam perveance,
are correlated with well-known instabilities [2] in periodi-
cally focused high-current ion beams with the Kapchin-
skij-Yladimirskij (KV) equilibrium distribution [1]. As
the vacuum phase advance and beam current are in-

creased, highly chaotic beam envelope oscillations are
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FIG. 1. Periodic step-function lattice ir, (s} representing a
periodically interrupted or alternating solenoidal focusing field.

found for beams that are not closely into the periodic
focusing channel.

We describe the envelope oscillations of an intense
charged-particle beam propagating through the periodic
solenoidal focusing field B(r,s) by [1,3,6, 16]

d rb
, +tc, (s)rb ———,=0 (1)

Js rb rb

in the paraxial approximation. In the beam envelope
equation (1), rb is the beam radius and s =z pbct is the
axial coordinate, where pbc is the average axial velocity
of the beam particles, and c is the speed of light in vacu-
uo. The periodic function tc, (s) =tc, (s+S) =q B, (s)/
4y)p/m c characterizes the strength of the focusing
field, where B,(s) B,(0,s) is the magnetic field on the z
axis, S is the fundamental periodicity length of the focus-
ing field, q and m are the particle charge and rest mass,
respectively, and yb (1 —p$) is the relativistic mass
factor of the beam particles. The periodic step-function
profile shown in Fig. 1 is assumed for «, (s), and the vac-
uum phase advance over one axial period of such a focus-
ing field is given approximately by crii [SJose.,(s)ds]'l2
=[riS tc, (0)]'l . The normalized beam perveance K
=2q Nb/y)pjmc is a measure of the beam self-field [3]
intensity, where Nb is the number of particles per unit ax-
ial length of the beam.
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which determines the radius of a matched (equilibrium)
beam for the case of a uniform magnetic field. As K is

increased, the beam radius expands due to the (defocus-
ing) self-field effect. Indeed, as K/etciIi2 ~, Eq. (2) re-

covers the Brillouin /fow condition [3], i.e., 2toeb/ybto,
=1, where tomb (4q N/mrbo)' is the nonrelativistic
plasma frequency of the beam particles, and ro, =qB,/mc
is the nonrelativistic cyclotron frequency.

For die, /dsWO and sufficientl large K, however, the
beam envelope equation (I ) describes a Hamiltonian sys-

tem with one and one-half degrees of freedom. It will be
shown in the subsequent analysis that Eq. (I) is nonin

tegrable and that the beam self-field effects induce non

linear resonances and chaotic behavior in the beam en-

velope oscillations. To parametrize Eq. (I) effectively,
we introduce the dimensionless parameters and variables
defined by

s rb 2 SK
s, ~ rb, S Jcz~ Kz~ K,

JeS
and express Eq. (I) in the normalized form

d 2rb K 1+ «, (s)rb ——— =0, (4)
ds rb rb

which is now characterized by the two dimensionless pa-
rameters K and «, (s). Unless specified otherwise, the di-
mensionless parameters and variables defined in Eq. (3)
will be used in the remainder of this paper.

(3)

2196

Equation (1) can be regarded as either a rigorous
differential equation governing the evolution of the outer-
most radius (envelope) of a beam with KV distribution
function [1,3, 16] or a phenomenological model describing
the evolution of the beam radius in an rms sense [6]. For
a beam with KV distribution function, it can be shown
[16] that the emittance is given by e=2Pe~/ybmpbc
=const, where Pe is the maximum canonical angular
momentum achieved by the beam particles. In the phe-
nomenological model [6], rb/J2 is the rms beam radius,
and e is the rms ernittance which generally varies with s
but is assumed to be constant in the present analysis. For
a beam in the saturated state of emittance growth, such
an assumption is well justified.

In the limit of tenuous beam with K—0, Eq. (1) is in-

tegrable because it is equivalent to the linear second-
order ordinary differential equation d u/ds + «;(s)u =0
by means of the transformation u(s) =rb(s)cos[efods/
rb(s)++ti]. For a symmetric lattice with «, (s) =«, (s
+5) tc, ( —s), such a linear differential equation is

known as Hill's equation. Furthermore, in the limit of a
uniform magnetic field with ic, (s) =«;ti=const, Eq. (1)
is also integrable, because the oscillations occur in the
effective one-dimensional static potential well described
by V(rb) =k,orb/2 —Klnrb+e /2rb. The potential V(rb)
has a unique minimum at

To explore the nonlinear resonances and demonstrate
chaotic behavior in the beam envelope oscillations, we use
the Poincare mapping technique [17] to track an ensem-
ble of phase-space trajectories as they intersect the phase
plane (rb, rb) located at successive axial positions
s=0, 1,2, . . . , where rb=drb/ds Fo.rmally, such a map
is expressed as

rb
I

rb

rb g(rb, rb)
=T

fb „g(rb,rb)

n=o, +1,+2, . . . ,

(5)

which maps the phase plane (rb, rb) onto itself from s =n
to s=n+1. In the present analysis, the functions g(rb,
rb) and g(rb, rb) are obtained implicitly by integrating

Eq. (4) numerically with a fourth-order Runge-Kutta al-

gorithm.
The axial dependence of the radius of a matched (equi-

librium) beam corresponds to a periodic solution [i.e. ,

rb(s+1) =rb(s)] to Eq. (4), which in turn corresponds to
a fixed point of the map defined by

rb

,rb,

fb
=T

,r'b,

I n principle, such a fixed point may correspond to a
periodic solution with a fundamental periodicity of 1/N,
where N =1,2, . . . . A fixed point is stable if the eigenval-
ues of the tangent map about that fixed point are of unit

module.
The Poincare map T has the property that for a sym-

metric lattice with «, (s) =ic, (s+ I) =«, ( —s), such as
the periodic step-function profile shown in Fig. 1, the line

rb =0 (rb axis) is an axis of symmetry of the map T; that
is, the phase plane (rb, rb) is symmetric with respect to
the rb axis. This symmetry follows from the fact that Eq.
(4) is invariant under the transformation (s, rb, rb)—( s, rb, —rb). —Moreover, it can be shown that the
fixed point of the map corresponds to an intersection of
the rb axis and its image, provided the intersection is

unique.
Figure 2(a) shows the Poincare surface-of-section plot

produced by successive applications of T with fifteen ini-

tial points along the rb axis, for a tenuous beam in a
periodic solenoidal field with step-function lattice (Fig.
1). The choice of system parameters in Fig. 2(a) corre-
sponds to K=0, ri 6, and «, (0) 3.79 (o'a=45. 5').
There is a unique fixed point (i.e., a unique matched
beam) at rb =rb =1.1 on the rb axis. The fixed point is

surrounded by an infinite number of invariant tori, four-
teen of which are shown in Fig. 2(a). Each of the tori de-
scribes a mismatched (nonequilibrium) beam whose en-

velope exhibits stable betatron oscillations about the en-

velope of the matched beam. In general, the envelope os-

cillations of a mismatched beam consist of the superposi-
tion of the envelope oscillations of the corresponding
matched beam and the associated betatron oscillations.
It should be emphasized that because Eq. (4) is integra-
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FIG. 2. Poincare surface-of-section plot for the envelope os-
cillations of tenuous and intense beams. The choice of system
parameters corresponds to (a) K 0, rt f, x; (0) =3.79
(ap 45.5'), and (b) K 3, rt f, , x;(0) 3 79 (o 45 5')
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ble in the limit of a tenuous beam, there is no finite-size
resonance, as illustrated in Fig. 2(a).

For a direct comparison with Fig. 2(a), the correspond-
ing Poincare surface-of-section plot is shown in Fig. 2(b)
for an intense beam with normalized self-field perveance
K 3. It is evident that the rich phase-space structure in

Fig. 2(b) is strikingly different from the simple phase-
space structure in Fig. 2(a). In particular, there coexist
fourth-order resonances (i.e., period-four orbits) and
fifth-order resonances (i.e., period-five orbits) in the
phase space shown in Fig. 2(b). The stable fifth-order
resonance corresponds to the five elliptical regions
separated by the unstable fifth-order resonance in the vi-

cinity of the fixed point (i.e., the matched beam) which is

located at rb =Fb 2.3 and rb =rb =0. The corresponding
phase advance over one focusing period is evaluated to be
o=fpds/rb(s) 0.257o'p=11.7', where rb(s) is the s
dependent radius of the matched beam. The stable and
unstable fourth-order resonances are further away from
the fixed point. Because the nonlinearity is small for the
case shown in Fig. 2(b), chaotic behavior is hardly visible
near the separatrix of either the fourth-order resonances
or the fifth-order resonances.

To characterize the nonlinear resonances such as those
shown in Fig. 2(b), we have examined the parametric
dependence of the axial wave number of the betatron os-
cillations. It is found that the fifth-order resonances in

Fig. 2(b) consist of betatron oscillations with wave num-
Iier k =k5 =2tr/5. Similarly, the betatron wave number(l)

for the fourth-order resonances is k =k4' =tr/2. In gen-

FIG. 3. Parameter domain for the resonances of order n 3,
4, and 5 with betatron wave numbers k„t'i 2'/3, ir/2, and 2x/5.
The third-, fourth-, and fifth-order resonances occur in the re-

gions bounded by the solid, dashed, and dotted curves, respec-
tively.

eral, for a pair of stable and unstable nth-order reso-
nances, the betatron wave number is given by k =k„'

2tr/—/n, where / = 1,2, . . . , n —1.
In the smooth-beam approximation, which is valid for

«ro & 90', it can be shown that the wave number of
small-amplitude betatron oscillations about the matched
beam is given by

k(op K) —[4o2+K2 K(4o2+K2) I/2] I/2 (7)

where op=[fpdsx, (s)]'/ [rite, (0)]'/ is the vacuum

phase ad~ance, and K is the normalized self-field per-
veance defined in Eq. (3). On the other hand, for large-
amplitude betatron oscillations, the space-charge (third)
term in Eq. (4) is negligibly small, and consequently the
betatron wave number is approximately k =k(op, K 0)
=2oo. Therefore, for specified values of oo and K, the
wave number of arbitrary-amplitude betatron oscillations
must satisfy the inequality 2op ~ k ~ k(op, K). In other
words, the parameter domain for existence of the nth-

order resonance with betatron wave number k„=2tr//n
is determined approximately by the condition

xl—K go
n

' 2 ' ' 2 i/2 ' ' 2 i/2
K tr/ K+ +
4 n 8

(8)
where n =3,4, 5, . . . and l = l, 2, . . . , n —I. For o & 90',
the condition expressed in Eq. (8) has been verified by
the numerical integration of Eq. (4), and agreement is

typically better than 5%. It follows from Eq. (8) that the
resonance width is given by hop = (J2 —1)n//n as
K

Figure 3 shows the parameter domains for the reso-
nances of order n =3, 4, and 5 with I =1, as obtained
from Eq. (8). The parameter domain for the third-order
(fourth-order) resonances overlaps with that for the
fourth-order (fifth-order) resonances for sufficiently large
values of K, whereas they are well separated for K & l.
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This explains why, for crti 45.5' and K=3, the fourth-
and fifth-order resonances coexist in the Poincare
surface-of-section plot shown in Fig. 2(b).

For tati & 90' and sufficient]y large K, the envelope os-
cillations become chaotic for some mismatched beams.
This is demonstrated by the Poincare surface-of-section
plot shown in Fig. 4 for the choice of system parameters
corresponding to K 5, tI 6, and tc, (0) 24.2 (o

I 15'). In contrast to Fig. 2, the phase space now con-
tains regular (elliptical) orbits as well as chaotic orbits
which are very sensitive to initial conditions In addit. ion

to the almost regular region associated with the fixed
point at ry 1.6 and Fb 0, there are stable third- and
fourth-order resonances with k k 3(2) 4tr/3 and k

k4(1 tr, respectively. The fixed point is completely
engulfed by the chaotic orbits as oo and K are further in-

creased.
It is worthwhile pointing out the qualitative connection

between the resonant and chaotic phenomena in the beam
envelope oscillations and well-known instabilities [2] in

periodically focused intense ion beams with KV distribu-
tion function [I]. For example, for tro 60' and K & 2.6,
the KV equilibrium is unstable against the fourth-order,
axisymmetric prturbations proportional to r [2], where
r (x +y )' is the radial distance from the beam axis.
This instability coincides with the presence of the fourth-
order resonances for oti 60' and K & 2.6, as seen from
Fig. 3. Furthermore, the strong, second-order (envelope)
instability [2] for the KV equilibrium, which occurs over
a wide range of values of K when oo & 90, is strongly
correlated with the chaotic beam envelope oscillations
shown in Fig. 4.

It is possible that the beam self4eld-induced nonlinear
resonances and chaotic behavior reported in this paper
play an important role in the transport of mismatched or
multiple beams, where large-amplitude, nonequilibrium
beam envelope oscillations and beam halo formation may
occur.

7
0

fb

FIG. 4. Poincare surface-of-section plot of the beam en-
velope oscillations for the choice of system parameters corre-
sponding to K 5, tt —,', and x;(0) 24.2 (tso 115').

To summarize, we have reported two new phenomena
induced by self-field effects in periodically focused intense
charged-particle beams, namely, nonlinear resonances,
and chaotic behavior in the beam envelope oscillations.
The resonance condition was derived and expressed in
terms of the vacuum phase advance and a scaled, normal-
ized beam perveance. Certain correlations were found
between the resonant and chaotic phenomena in the beam
envelope oscillations and well-known instabilities in

periodically focused intense ion beams with the Kap-
chinskij-Vladimirskij equilibrium distribution. We be-
lieve that such resonant and chaotic phenomena can be
observed in beam transport experiments in which the
beam is not closely matched into the periodic focusing
field. Although these findings have so far been obtained
for periodic solenoidal field configurations, they are also
expected to occur for alternating-gradient quadrupole
magnetic field configurations.
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