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The problem of variational collapse for one-particle Dirac Hamiltonians HD;, , is solved by
applying the Rayleigh-Ritz variational principle to the operator 1/Hn;„, instead of to the Dirac
Hamiltonian itself. The variational trial functions lP) are taken to have the form lP) = Hn;«, l@),
where lQ) is a linear combination of basis functions. Only the matrix elements of Hn;„, and of
HD;, , are then needed.

PACS numbers: 31.30.Jv, 03.65.ae, 03.65.Pm, 31.15.+q

The conventional Rayleigh-Ritz variational principle as
applied to the Dirac equation is merely a stationary prin-
ciple. It is not a minimum principle because the Dirac
Hamiltonian is not bounded below; it is not a maximum
principle because the Dirac Harniltonian is not bounded
above. This is the well known problem of variational col-
lapse, which causes difficulty when basis set methods are
used to construct approximations to the bound states of
a Dirac equation. In a number of cases of interest, this
difficulty can be circumvented by applying the variational
principle to an appropriately chosen function of the Dirac
Hamiltonian Hp;, s, instead of to the Dirac Hsmiltonian
itself. The function used maps the spectrum of the Dirac
Hamiltonian in one to one fashion onto the spectrum of a
bounded self-adjoint operator, for which the variational
principle is both a maximum principle and a minimum
principle.

A number of proposals, none of which we find com-
pletely satisfactory, have been made for avoiding the vari
ational collapse problem. A review of these was given by
Kutzelnigg [1] in 1984. The problem has been discussed
more recently by Stanton and Havriliak [2], Baylis and
Peel [3], Goldman [4], Talman [5], Rosenberg and Spruch
[6], Grant and Quiney [7], Ishikawa and Sekino [8], Dyall
and Ftngri [9], and I aJohn and Talman [10].

We will solve the variational collapse problem for those
Dirac Hamiltonians whose spectrum has a gap between
the positive and negative energy states by applying the
variational principle to G (Hp;, «) = 1/Hp;, « instead of
to the Dirac Hamiltonian itself. We will also consider the
more general choice G(W;Hp;, «) = 1/(Hp;, « —W),
where R' is a real number which is not in the spectrum of
Hp;,«, by appropriate choices of W the energy eigenval-
ues can be bracketed by upper and lower bounds. Bounds
on the errors in the wave functions in the I norm can
also be obtained.

We begin with the fact that the Dirac Hamiltonian is
self-adjoint [11]. This allows us to define functions of
the Dirac Hsmiltonian via the spectral theorem for self-
adjoint operators [12]. Specifically, for a function F (z)
of a real variable z which is not too wild [12] we define
the corresponding function F (Hp;, ,) of Hp;, , by

F(Hp;...) =) F(E~) le&)(eel
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FIG. 1. The spectrum of the Dirac Hamiltonian HD;, ,

The numbers Es and vectors les) are the eigenvalues
and eigenvectors of Hp;, , the sum over j in (1) runs
over all of the spectrum of Hp;,«, including the con-
tinuum. We have written our definition (1) in the no-

tation used by most quantum mechanics texts for the
benefit of the reader who is uncomfortable with the pro-
jection valued measures used by Reed and Simon [12].
If F(z) is real for all z in the spectrum of Hp;,
F (Hp;„,) is self-adjoint. If F (z) is bounded for all z
in the spectrum of Hp;, «, F(Hp;,«) is bounded. We
will consider the specific choices F (z) = G(z) = 1/z
and F (z) = G (W; z) = 1/ (z —W), both of which give
rise to self-adjoint operators. G (Hp;,«) = 1/Hp;, « is
bounded (by 1/e) if there is a real e ) 0 such that the re-

gion lzl & e contains no points of the spectrum of Hp;r«.
Similarly, G (W; Hp;,«) = 1/ (Hp;,« —W) is bounded if
lz —Wl ( e is not in the spectrum of Hp;,

The basic idea can be understood by looking at the
picture of the spectrum of Hp;, «shown in Fig. 1 and
the picture of the spectrum of 1/Hp;«, shown in Fig. 2.
The pictures have been drawn for a general Hp;, «which
has both positive and negative energy bound states; in
particular cases either or both sets of bound states may
be absent. The points in the spectrum of 1/Hp;, «, which
will be denoted by the Greek letter A, are just the recip-
rocals of the points in the spectrum of Hp;, «, which will

be denoted by E. In particular, the gap between the
positive and negative energy states in the spectrum of
the Dirac Hamiltonian HD;, is mapped to the exterior
of the spectrum of 1/Hp;, «, the lowest positive energy
state is mapped to the top of the spectrum of 1/Hp;, «,
and the highest negative energy state is mapped to the
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FIG. 2. The spectrum of G (HD;«, ) = 1/HDi«c.

bottom of the spectrum of 1/HD;«, . The Rayleigh quo-
tient for an operator is an average over the spectrum
of the operator and therefore cannot lie in the exterior
of that spectrum. Thus the Rayleigh-Ritz variational
principle applied to 1/HD;, ~ can never yield a value of
A for which the corresponding energy E = 1/A lies in
the gap between the positive and negative energy states.
If a positive energy bound state exists, maximizing the
Rayleigh quotient for 1/HD;, ~ with respect to a vari-
ational trial function yields approximations A~ to the
largest eigenvalue of 1/HD;«, which converge monoton-
ically from below. The corresponding approximations
E~ to the lowest positive energy bound state of KD;„„
which are calculated via E+ ——1/A+, converge monoton-
ically from above, just as for the ordinary Rayleigh-Ritz
principle applied to a nonrelativistic Hamiltonian. Simi-
larly, if a negative energy bound state exists, minimizing
the Rayleigh quotient for 1/HD;, ~ yields approximations
A to the smallest eigenvalue of 1/HD;, which converge
monotonically from above. The corresponding approxi-
mations E to the highest negative energy bound state
of HD;„„calculated via E = 1/A, converge monoton-
ically from below.

The difficult problem of calculating matrix elements of
the inverse of an operator is avoided by taking the varia-
tional trial functions

I P) to have the form lg) = HD;, iN: lg)
where Ig) is a linear combination of basis functions. The
Rayleigh quotient RG for G(HD;„,) = 1/HD;„, then
takes the form

(@I@)

(41HD ..I@)

could be recovered from the Rayleigh quotient RG by us-

ing IP) = HD~, ,IQ). This proposal fails because H&~, as
defined by (1) is not self-sdjoint (note that x~~s is imagi-
nary for z negative). This lack of self-adjointness implies

that the product of the ket vector H&~, ,I@) with the cor-
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{4I4» (@IHD;,,I@&
'

and only matrix elements of H Di«and HD;, , are
needed. The choice of this form for the trial functions
I~ti) does not impose any restriction on Iiti) beyond the
obvious requirement that IP) be square integrable, be-
cause there exists a Ig) such that IP) = HD;„,lg) for
every IP) in the space I s of square integrable functions if
Izl ( e is not in the spectrum of HD;«, . It has been sug-
gested that the reciprocal of the usual Rayleigh quotient
RH, which is

which is the Dirac Hamiltonian for a hydrogen atom with
a point nucleus in dimensionless form. cx and P are the
usual Dirac matrices. Z~ is the dimensionless number
which is the product of the nuclear charge Z (in units
of the electronic charge) with the fine structure constant
es/hc. The Bohr radius has been used as the unit of
length in obtaining the form (4); this choice of length
scale makes nonrelativistic intuition easily available. The
solution to HD;,~lg) = EIQ) has the form

(5)

where, for positive energy states, Ay (r) is the radial part
of the large component and —zay (r) is the radial part of
the small component. For negative energy states, Ay (r)
is the radial part of the small component and —zay (r)
is the radial part of the large component. y is the two
component spinor

„ex~1,m
~e

t'

v'28+1 (
E km+ s Yr

(6)
~m+ 2Y~~+x )

where the Y& ~+y are spherical harmonics. We will use

variational trial functions of the form (5) in which Ay (z )
and ay (r) are replaced by finite length basis set expan-
sions.

We consider first a simple trial function of the form (5)
with

A~ (r) = C exp ( yr), and—a~ (r) = O.

Here p, is a (nonlinear) variational parameter and C is a
normalizing constant. It is straightforward to show that,
with this trial function, the Rayleigh quotient RH for the
usual variational pnnciple &s

(@IHD. IO) s(, zs)
{Nl@)

Obviously RH has neither a maximum nor a minimum

as a function of p„and can be made to take on any value

below mc by an appropriate choice of y, (note that p,

must be positive to preserve the square integrability of
the trial function). This is the phenomenon of variational
collapse. On the other hand, the Rayleigh quotient ~
for G (HD;, ,) = 1/HD;, „computed with the trial func-

tion I~tt) = HDi«cl4)~ is

responding bra vector is not (QIHD;, ,Ig), and that the

expectation value of 1/HD;, ~, with respect to HD.„„IQ)is

not {Qlg). Thus there is no simple relationship between
the variational principle for R~ and the usual variational
principle for RH.

We will demonstrate the variational collapse, and il-

lustrate our method of avoiding it, by considering

. 0'i Z'
HD;„, = mc Z~a —z—

I
+t9-
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&41&) &@IHD;, ]+)
1 —pZ~

mcz [Z2 (1+2Zz) pz —2Zzp+ 1]
' (9)

The Rayleigh quotient (9) is easily shown to have one
maximum, at p, = p+, and one minimum, at p = p,

where

2m' (, ,
) (, 1+2Z2

= mc' —,—3+ 0 (Z')
a

(12)

The minimum y, yields a lower bound E to the highest
negative energy state which is

I+Zs )
Zg ( 1+2' )

(10)

The maximum p+ yields an upper bound E+ to the low-
est positive energy state which is

2mc (1+Zs) 1 — + 2Z
Z2 + ~ 1+Zz

= mc' 1 ——,
' Z' + 0 (Z )

The upper bound E+ gets the leading term mc of the
expansion about the nonrelativistic limit right. The next
term difFers from the correct nonrelativistic ground state
energy —smcsZz by a factor of 2, but is obviously an

upper bound as it must be. The lower bound E is very
bad, as is to be expected, since we have set the component
a~ (r), which is the large component for negative energy
states, to zero in our variational trial function (7). We
consider next a trial function of the form (5) in which

(11) A~ (r) and ay (r) are given by basis set expansions of
the form

M

~ ()=( )-":(--'-'") & ~ L'
m=O

N

a~ (r) = (ar) exp (—za, r ) ) c„L„(cPr)
n=O

J
+) 5 (nr)' '

K
+ ) dg (ur) " '

(13)

(14)

The trial functions (13) and (14) are bad enough to show
[

what is important for rapid convergence and what is not.
The expansions (13) and (14) need not be of the same
length; M and J in (13) need not equal N and K in
(14). Neither small r boundary conditions nor relations
between large and small components need be imposed;
the only requirement on the trial function ~Q) is that

&Q]HDz;,„~Q) be finite. The L and L„are
Laguerre polynomials in the notation which is standard
in the mathematics literature [13]. n and p are nonlinear
variational parameters. Table I illustrates the conver-
gence to the exact hydrogenic ground state energy, which
is 0.999973373984656675074281052966.. ., when n =
1/v 2, N = M/2, and K = J. The value of p has been
chosen to get the leading term of the small r behavior
right; nonzero values of K = J get additional terms of

the small r behavior right. The value 1/137.03604 has
been used for Z~. Examination of the table shows that
the variational approximation converges monotonically
to the exact energy from above. A rate-of-convergence
theory for the variational method advocated here can be
developed which is similar to the theory given by Hill

[14] for the nonrelativistic Schrodinger equation; a de-
tailed discussion of this theory, which is too long to be
presented here, will be published elsewhere.

The eigenvalues of the Dirac Hamiltonian can be
bracketed with upper and lower bounds by applying
the Rayleigh-Ritz variational method to the more gen-
eral choice G(W&HD;, ~,) = 1/(HD;, —W). In this
case the trial functions ~P) are chosen to have the form

]P) = (HD;„, —W) ~Q), where ~Q) is a linear combina

TABLE I. Errors when n = 2 ~, N = M/2, and K = J.
M
2
4
6
8
10
20
40
60
80
100

K= J=O
0.655 x 10
0.256 x 10
0.164 x 10
0.118 x 10
0.927 x 10
0.412 x 10
0.171 x 10 6

0.995 x 10 ~

0.671 x 10 7

0.492 x 10

0.871 x
0.130 x
0.598 x
0.161 x
0.879 x
0.558 x
0.531 x
0.135 x
0.506 x
0.236 x

=1
10-'
10
10
10
10-'
10
1O-"
1O-"
10-"
10—11

K= J=2
0.263 x 10 6

0.804 x 10
0.198 x 10 "
0.810 x 10
P.257 x 1P-'
0.381 x 10 '0

0.735 x 10 '
0.255 x 10
0.467 x 10 '
0.136 x 10 '

K= J=3
0.802 x 10
0.212 x 10 7

0.112 x 10
0.422 x 10 8

0.185 x 1P
0.302 x 10
0.458 x 10 '
O.251 x 1O-"
0.290 x 10-"
0.647 x 10 '
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tion of basis functions. If S' is chosen to lie in the gap
between any two bound states, lower bounds to the states
below W, and upper bounds to the states above W, are
obtained (this is essentially the Lehmann-Maehley [15]
approach to the Temple-Kato [16] lower bound). Errors
in the wave functions in the L2 norm can be bounded
with the aid of the Eckart [17] bound to the overlap.
Only the Gram (overlap) matrix and the matrix elements
of HD;, sc and HD;,~ are needed for the computation of
these bounds. The method outlined here can be applied
whenever the spectrum of the operator whose eigenvalues
are required contains gaps; the condition that W not be
in the spectrum of the operator can then be satisfied by
placing W in one of the gaps. For example, an attrac-
tive Coulomb potential which is so strong that the lowest
bound state lies below zero but above —mc can be han-
dled by using G (W; HD;„,) = 1/ (HD;, —W) with W
chosen to lie in the gap between the lowest bound state
and —mc2.

Because matrix eigenvectors cannot be accurately de-
termined when the corresponding eigenvalues are close
together [18], eigenvector calculations should be per-
formed by using 1/(HD;„, —W), with W chosen close
enough to the energy eigenvalue of interest so that the
corresponding eigenvalue A of 1/(HD;„, —W) is well

separated from all other eigenvalues. A "relativistic Stur-
mian" basis set which gives a discrete approximation
to the Dirac spectrum suitable for performing the sums
over intermediate states which arise in such problems as
two-photon decay and the calculation of polarizabilities
[19] can be obtained by taking all of the eigenvectors of
the matrix eigenvalue problem which is obtained from
the variational principle for the eigenvalues. However,
the presence of the numerical difficulty noted above im-

plies that calculations with such relativistic Sturmians
should be carried out via analytically equivalent proce-
dures which avoid the explicit matrix diagonalization.
These issues will be discussed in more detail elsewhere.

The method outlined here is an adaptation of the
Lehmann-Maehley approach to the Temple-Kato lower
bound, which was explained to the first author (R.N.H. )
by David W. Fox a number of years ago. The idea of
applying this approach to the Dirac equation grew out
of a conversation with S. P. Goldman, who suggested the
trial function (7). The work has been supported by NSF
Grant No. PHYQl-06797.
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