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One-Loop n-Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits
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We present a conjecture for the n-gluon one-loop amplitudes with maximal helicity violation. The
conjecture emerges from the powerful requirement that the amplitudes have the correct behavior in the
collinear limits of external momenta. One implication is that the corresponding amplitudes where three
or more gluon legs are replaced by photons vanish for n > 4.

PACS numbers: 12.38.Bx

Multijet processes at colliders require knowledge of
matrix elements with multiple final state partons. At tree
level concise formulas for maximally helicity violating
amplitudes with an arbitrary number of external legs
were first conjectured by Parke and Taylor [1], and later
proven by Berends and Giele using recursion relations
[2,3].

In general, amplitudes in gauge theories satisfy strong
consistency conditions; they must be unitary, and must
satisfy correct limits as the momenta of external legs be-
come collinear [1,2,4]. In this Letter we discuss the ex-
ample of a one-loop amplitude which is sufficiently con-
strained that we can write down a form for an arbitrary
number of external legs. The all-n conjecture which we
present is for maximal helicity violation, that is with all
(outgoing) legs of identical helicity, was originally
displayed in Ref. [5], and has just been confirmed by re-
cursive techniques [6,7]. The construction is based upon
extending the known one-loop four- and five-gluon (8]
amplitudes which were first obtained using string-based
methods [9].

The one-loop n-gluon partial amplitude A, (17",
2%, ....n%) is associated with the color factor
NTr(T® - - - T™) and gives the leading contribution to
the amplitude for large N [4,10,11]. The subleading par-
tial amplitudes A,.., ¢ > 1, can be obtained from A4,; by
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in the limit where the momenta k,— zkp and k,
— (1 —z)kp with kp =k, +k,. Here A is the helicity of
the intermediate state with momentum kp. This is analo-
gous to the form of tree-level collinear limits [1,2,4,14].
The explicit form of the one-loop splitting functions may
be extracted from the known four- [15] and five-point [8]
gluon amplitudes. All known one-loop amplitudes (8,12}
satisfy Eq. (1), though there is as yet no proof of its
correctness of larger n. Because of the supersymmetry
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summing over various permutations [11,12]. The struc-
ture of A, is particularly simple, making it an ideal can-
didate for finding an all-n expression. The all-plus helici-
ty structure is cyclicly symmetric; and no logarithms or
other functions containing branch cuts can appear. This
can be seen by considering the cutting rules: The cut in a
given channel is given by a phase space integral of the
product of the two tree amplitudes obtained from cutting.
One of these tree amplitudes will vanish for all assign-
ments of helicities on the cut internal legs since
Afree(1 £ 2% 3% . nt)=0, so that all cuts vanish.
Similar reasoning shows that the all-plus helicity loop
amplitude does not contain multiparticle poles. The only
singularities are those where two (color-adjacent) mo-
menta become collinear.

Another simplifying feature of the all-plus amplitude is
the equality, up to a sign due to statistics, of the contribu-
tions of internal gluons, complex scalars, and Weyl fer-
mions. This is a consequence of the supersymmetry
Ward identity [13] ASUSY(1* 2% ... n*)=0 for N
=1 and N =2 theories. For Weyl fermions and complex
scalars transforming under the fundamental rather than
the adjoint representation (in a vectorlike theory), the
color factor is smaller by a factor of N, and no subleading
color factors appear.

At one loop the collinear limits of color-ordered one-
loop QCD amplitudes are expected to have the form

)

I Ward identity relating the gluon and fermion contribu-

tion to the scalar one, it suffices for our present purposes
to prove it for the case of scalars in the loop.

The one-loop all-plus helicity amplitudes have a simple
collinear structure because the loop splitting function
Split'® does not enter; it multiplies a tree amplitude
which vanishes. The tree splitting functions that enter
are [1,2,4]
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FIG. 1. Diagrams that contribute to the tree splitting func-
tions.

Split¥c(a *,6*) =0,
2)
Split™(a*,6%)=1/[Vz(1 —z){ab)],

where we follow the notation of Ref. [14] for the spinor

inner products (ab) and [ab] which are equal to +/sg» up
to a phase. In general, the nonvanishing splitting func-

tions diverge as 1/~/su in the collinear limit su = (k,
+kp) 2.0.

We now outline a proof of the universality of the
scalar-loop contributions to the collinear splitting func-
tions. We divide the diagrams into several sets, depend-
ing upon the topology of the two external collinear legs
which, without loss of generality, we label 1 and 2. In a
color-ordered diagram, only adjacent legs can have col-
linear singularities. It turns out that Split"™ arises from
the diagrams in Fig. 1, Split'* from the diagrams in Fig.
2, and diagrams without explicit poles in s;2, such as
those in Fig. 3, do not contribute to the splitting func-
tions.

We begin with the diagrams in Fig. 1. The only Feyn-
man diagrams which can contribute to the tree splitting
function are those containing explicit poles in s, as de-
picted in Fig. 1; trees containing legs 1 and 2 but lacking
this explicit pole will not contribute. The analysis is iden-
tical to the tree-level analysis and gives a similar result,
yielding the first term in Eq. (1) containing the tree split-
ting function.

The diagrams in Fig. 2 also contain explicit collinear
poles and give rise to the Split'®P function. There are
three groups of diagrams in this category depicted in
Figs. 2(a)-2(c). Evaluating and summing over the three
types of diagrams in the collinear limit yields

11 ,
gk k) AT (2
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where & are gluon polarization vectors. This will give the
entire contribution to the loop splitting functions for
internal scalars. Converting to a helicity basis [16] in a
manner similar to that used at tree level in Ref. [2], one
finds

Split$PO (g * p+) = — V2 (T —2)[ab)/(487%ab)?)
4)
Split'PlOl(q + p+) =/Z(1—2)/(487%ab)) ,
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FIG. 2. Diagrams that contribute to the loop splitting func-
tions.

and Split'°P9 (g * b F) vanishes.

The remaining diagrams do not have the required col-
linear pole arising from a tree propagator; it would have
to emerge from the loop integral. One possibility is that
one collinear leg is directly connected to the loop via a
three vertex while the other collinear leg is part of a tree
or a four vertex sewn onto the loop. These diagrams can-
not have any collinear poles in sy, because the loop in-
tegral does not contain this kinematic invariant except in
a sum with other kinematic invariants.

The next possibility, depicted in Fig. 3(a), is that both
legs in the collinear pair are attached to a scalar loop by
three-point vertices and are part of a loop with four or
more legs. Since the splitting functions diverge as s,
— 0, contributions come from regions where the three
propagators 1/(I —k3)?, 1/1% and 1/(I+k,)? depicted in
Fig. 3(a) blow up. The leading singularities come from
the region / = ak |+ Bk, where a and B are arbitrary con-
stants. Near the special points (a,8) =(—1,0) and (0,1)
a fourth propagator blows up requiring a separate
analysis, which will lead to the same conclusion as the
generic case. In the generic case, in the region / = ak,
+ Bk, the calculation reduces to a triangle integral. An
analysis of the integral [17] shows that there are no con-
tributions to the splitting functions from Fig. 3(a) or
3(b). For gluons or fermions circulating in the loop (for
a generic helicity amplitude), loop-momentum-inde-
pendent terms in the vertices of the diagrams in Fig. 3 in-
validate the above analysis.

The starting point in constructing our n-point expres-
sion is the known five-point one-loop helicity amplitude

8l,
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FIG. 3. Two of the remaining diagram types which have no
collinear poles for scalars in the loop.
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Asy (17,2434 4% 5%) = 5
1927
where &(i,j,m,n) =4iey ook k 'kiks = i1 jm) mnl{ni)
—(ipjmXmn)nil, and N, is the number of color-
weighted bosonic states minus fermionic states circulating
in the loop; for QCD with ny quarks, N, =2(1 —ns/N)
with N =3,

Using Egs. (1) and (2) and Afe(1 T 2%, ....n")
=0, we can construct higher point amplitudes by writing
down general forms with only two particle poles, and re-
quiring that they have the correct collinear limits. Gen-
eralizing to all n we have

iN, E,+0,

A (1525 = Gy ©
where
0,= Z €(i,ia i3 i)
1 <i\<iy<iy<ig=<n-—1
= - Ir(kilkizk,’iki‘)’s) . (7)

1<iy<iy<iy<ig<n

To describe E, define 17! =(k;+k; 4+ - - - +k,<+{,_.)2
(all indices mod n); note that 12'=g; 4, and 1M=0.

Then
LR S A S
E,= 2 PR, =B VT
p=2 i=1
n
+ | L3 lmpfm) — gm0y (8)
2i=) m=n/2, neven
or equivalently
E,=— tr(kilkiz ,'ak,"). )

|<i)<i;<iy<ig=<n

The two terms O, and E, can be combined into a single
trace, a form which agrees with Ref. [6], but for the pur-
poses of discussing symmetry properties, it is more con-
venient to keep them separate.

The O, term (7) is not manifestly cyclicly symmetric;
however, the difference between O, and its cyclic permu-
tation vanishes using momentum conservation. To verify
that in the limit that two legs become collinear it reduces
to the corresponding (n — 1)-point term O,—, it suffices
to check the limit 112. Terms of the form &(1,2,1,j4)

(12X23)(34){45)51)

(5)

clearly vanish. The remaining terms containing | and
2 may be paired as &(1,is,i3,i4) +&(2,i2,i3,i4) =e(P,is,
i3,is), where kp=k,+k, Adding these terms to the
terms containing neither 1 nor 2, and relabeling {P,3,
4, ... .n}—1{1,2,3,...,n—1}, we see that O, — O,—, in
the limit 1112, as required. The cyclic symmetry of the E,
term (8) is manifest. The collinear limit of the equivalent
form (9) follows the same argument as for the O, terms.

Assuming that the denominator of the all-plus ampli-
tude is given by (12)---(nl), one can prove that the
functions E, and O, are uniquely determined by the col-
linear limits for all n > 5. [The collinear limit of Os is
special because £(1,2,3,4) vanishes in all collinear limits.]
Presumably one should be able to give a proof of the
same statement relaxing the denominator assumption.

In massless QED, through use of recursion relations
[2,3]1, Mahlon has demonstrated that the one-loop n-
photon helicity amplitudes A,,(y.i,y?, o ,y,,+) vanish
for n>4 [18]. One can generalize Mahlon’s results in
the all-plus case to “mixed” photon-gluon amplitudes us-
ing the expression (6) and converting some of the gluons
into photons. Amplitudes with r external photons and
(n—r) gluons have a color decomposition similar to that
of the pure-gluon amplitudes, except that charge matrices
are set to unity for the photon legs. The coefficients of
these color factors, A4y, are given by appropriate cyclic
sums over the pure-gluon partial amplitudes, retaining
only the contributions from particles in the fundamental
representation in the loop; e.g., for a single quark with
electric charge Q, replace V,— N,f“"d= —2/N, and the
overall coupling factor g”— g"~"(eQ~/2)". Defining the
short-hand &,(i,;) ={ij)/(inXnj)), performing the cy-
clic sums, and making repeated use of spinor identities
we can write down simple forms for the all-plus partial
amplitude with one or two external photons (legs
n---n—r+1), and any number of gluons,

iNd OIT+ELY
192722 (U2X23) - - n—r—1t,n—rXn—r,1)
(10)

rY =
An;rl -

| with

0,7=-2

>

Il <i<iy<iz<ig<n-—I

b3

1<i<iz<iy<n-—1I

Ej7=2

077 =4

1<i <ij<iy<n-2

2

1=<i<i;<n-2

2Y =
n7—4
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For three external photons, an even more striking re-
sult emerges: the amplitude vanishes,

Ayt yvihed . . ga ) =0. (12)

Since amplitudes with even more photon legs are ob-
tained by further sums over permutations of legs, the all-
plus helicity amplitudes with three or more photon legs
vanish (for n>4) in agreement with the expectation
from the collinear limits.

In order to extend these methods to other helicity am-
plitudes one would first need a general proof of the col-
linear limits for particles circulating in the loop other
than scalars [17] (which sufficed for the all-plus case be-
cause of the supersymmetry identities). The loop split-
ting functions appearing in Eq. (1) can already be ex-
tracted from five-parton amplitudes [8,12]. We expect
that collinear limits will be a useful tool in constructing
one-loop helicity amplitudes besides those presented here.
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FIG. 1. Diagrams that contribute to the tree splitting func-
tions.
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FIG. 2. Diagrams that contribute to the loop splitting func-
tions.
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FIG. 3. Two of the remaining diagram types which have no
collinear poles for scalars in the loop.



