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Stochastic Resonance on a Circle
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We describe a new realization of stochastic resonance, applicable to a broad class of systems, based on

an underlying excitable dynamics with deterministic reinjection. A simple but general theory of such
"single-trigger" systems is compared with analog simulations of the Fitzhugh-Nagumo model, as well as
experimental data obtained from stimulated sensory neutrons in the crayfish.
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Following the introduction of a modern theory [1],and

its demonstration in a wide variety of experiments [2],
there has been a great deal of continued interest in sto-

chastic resonance (SR) [2-4]. However, all theoretical
treatments, including the original discovery of SR as a

dynamical aspect of a global climate model [5], as well as

all experimental realizations reported to date, have ex-

plored its existence in systems exclusively based on the

classical motion of a particle confined in a monostable or
multistable potential. A weak periodic signal is applied,
for example, to the bistable potential, in such a way as to
cause the wells to alternately be raised and lowered with

respect to the barrier. The amplitude of the signal alone

is insufficient to cause the particle to surmount the bar-
rier and to switch wells, but, with the addition of noise,

usually Gaussian and white, a nonzero probability of
switching from either well to the other appears which

varies with the period of the signal. The resulting motion

is a train of switching events which occur at more-or-less

random times but with some degree of coherence with the

signal. Recent and interesting experimental examples,
one wherein this type of motion was induced by purely
thermal noise [6], and the other employing optical bista-
bility [7], have been reported.

There is an interpretation of SR based on noisy infor-
mation transmission. In this view, an interwell switching
event is interpreted as the transmission through the sys-

tem of one bit of information about the frequency of the

signal. In this view, the intrawell particle motion is ig-

nored or filtered out, since it conveys virtually no infor-
mation about the signal. The signal-to-noise ratio (SNR)
of the system response is obtained from the power spec-
trum of the interwell motion. The signature of SR is that
the SNR passes through a maximum at an optimal value

of the input noise intensity [1,8). The details of the be-
havior depend on the specific dynamical properties of the

system, for example, the unperturbed barrier height, the
inertia of the particle (unless infinitely damped), the

damping properties of the medium in which the particle
moves, and the details of the shape of the potential bar-
rier and wells.

Here we explore SR with a diA'erent class of dynamical
systems based not on bistability but rather on an excit-
able dynamics [9]. Our proposed system consists only of
a potential barrier, a weak coherent (periodic) signal
esinmt whose amplitude is insufficient to cause the state
point to surmount the barrier, and a Gaussian white noise

((t) with zero mean. A key ingredient here, in contrast
to previously studied SR systems, is a deterministic rein-

jection: Upon crossing the barrier, the state point returns
to its "rest state" deterministically, within a certain re-
fractory time. This view is appealing, since it represents
a simple dynamical process based on a single potential
well, for which SR can be observed. It has the additional
advantage that, in the present context, it is believed to
represent the fundamental dynamica/ process which ac-
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counts for action potential (firing) events in sensory neu-

rons [10]. SR has recently been observed in experiments
with hydrodynamically sensitive hair mechanoreceptors
in the crayfish Procambarus clarkii [I I]. (We note that
other "single-state" versions of SR have been reported,
which while interesting in their own right are, however,
rather diAerent: Gitterman and gneiss define SR as a
minimum in the escape time from a single well [12];
Stocks, Stein, and McClintock describe "nonconvention-
al" SR where inertia plays a central role [13].)

To fix ideas, consider the simplest realization of this
picture, as illustrated in Fig. 1(a), which depicts a one-
dimensional circular phase space. The state point, driven

by a weak signal and noise, jiggles about its nominal rest
state (stable fixed point); there is also a barrier threshold
(corresponding to the unstable fixed point). For example,
a specific realization of this situation is given by

diti/dt+siniti A+esincot+g(t), A ( I,
which describes a Josephson junction biased in its zero
voltage state, or a rigid charge density wave below its de-

pinning threshold. Whenever the barrier is crossed, the
dynamics automatically returns the state point to the
stable fixed point. Each time the barrier is crossed, the

system executes one circuit, returning to the neighbor-
hood of the fixed point after the refractory time At Each.

trip around the circle is represented by a single pulse of
height Vti and width At in the time series V(t); see Fig.
l(b). The time series V(t) is partially coherent with the

signal, resulting in the sharp peaks at the signal frequen-

cy and its harmonics in the power spectrum, as illustrated
in Fig. 2(a). For rectangular pulses, the broadband noise

background in the power spectrum is a squared sine func-
tion whose zeros are determined by the width of the

pulses h, t.
Though Fig. 1(a) depicts perhaps its simplest incarna-

tion, this sort of excitable dynamics with deterministic
reinjection occurs in a broad range of systems. Motivated

by the crayfish neutron experiments, we chose to study
another example, namely, the Fitzhugh-Nagumo (FN)
neuron model [10]:

r w =i —w —b+esintot+j(t) .
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where v(t) is the fast variable representing the action po-
tential, w(t) is the slow, or recovery, variable which es-
tablishes the refractory time, and r, , and r„, are the fast
and slow characteristic times, respectively. We con-
structed an electronic circuit model of Eqs. (2); the out-
put i (t) was converted into a time series of standard
pulses V(t) with Vo=I.O V and At =2.5 ms. The power
spectrum shown in Fig. 2(a) was generated from this
model.

We now turn to a theoretical analysis of this generic
threshold-plus-reinjection dynamics, to demonstrate that
it leads to SR. Our approach is quite different from pre-
vious SR theories; we do not proceed from any particular

IL ] a II g.

FIG. I. (a} Dynamical motion on a circle driven by a sin-
usoidal function plus noise. The cross (dot) represents an un-
stable (stable) fixed point; (b) time series generated successive
escapes (bottom): each crossing results in a standard pulse
added to the time series (top).

0 2

VJ
L

C)

O
I

o to~:sshJ~~ g

CL

Q
~W

0.00 0.05 0.1 0 0.1 5 0.20
Frequency (KHz)

FIG. 2. (a) A power spectrum generated by the electronic
FN model for b =0, noise voltage of 0.34 V, „e 0.03 V, and
~=55 Hz. The threshold for firing is b, 0.15 V. The charac-
teristic times were r,. =10 ps and r 1 ms which resulted in

action potential widths (= 200 ps) and refractory times ( = 2.5
ms) in good agreement with those obtained from the crayfish
mechanoreceptor. (b) A power spectrum obtained from the
mechanoreceptor cell.
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stochastic differential equation model. Rather, we formu-

late the problem as a modified version of the "shot ef-
fect."

In the classic shot effect [l4], one assumes a constant
rate of events (threshold crossings) au, each event gives
rise to a single pulse F(t), and successive events at times
t ~, t 2, . . . , are statistically independent. The total
response is simply V=+ttF(t —ttt). The probability that
K events occur in the time interval (O, T) is given by the
Poisson distribution

Ptt(T) =(aoT) exp( —aoT)/K! . (3)

From the resulting series of pulses V(t), one calculates
the autocorrelation function C(r ) (V(t) V(t+ z )),
where (. ) denotes an ensemble average, with the result

[l4]

(4)C(z) =au F(t)F(t+z)dt+ ao„F(t)dt
This formulation corresponds to the signal-free (a =0)

version of our problem. The effect of the signal is to
periodically modulate the event rate. We thus want to
adapt the calculation to the case of a time-periodic rate
a(t). Of course, it is insufficient to simply substitute a(t)
for ao in Eq. (4); rather, we must rederive the expression
for the correlation function. Most importantly, we want

to preserve the feature of statistically independent events.
To this end, we modify the Poisson distribution by taking
atiT foa(t)dt in Eq. (3); physically, we demand that
the rate a(t) is non-negative. Since a(t) is periodic, we

can expand it in a Fourier series,

4I I (z)
SNR = lOlog&u exp( —U/D)

lo(z)
(9)

where z = rtU/D and 1„ is the modified Bessel function of
order n. Equation (9) displays the characteristic signa-
ture of stochastic resonance over a wide range of parame-
ter values g and U, namely, a peak as a function of D.
For small z, this reduces to

U 2g2
SN R l 0 logi0 exp( —U/D )

D
(lo)

This result diA'ers from the well-known result for a bi-
stable system [I] by a factor of 2 in the denominator of
the exponent, a result which can be understood physically
since transitions are made only "to one side" in the
present case [clockwise as depicted in Fig. l(a)] as com-
pared with the two "back and forth" transitions in bi-
stable systems. Equation (IO) is compared to data from
the FN model and from experiments on the crayfish
mechanoreceptor as shown by the solid curve in Fig. 3.

We turn now to the experiment. We have chosen a
simple sensory neuron, the hair mechanoreceptor cell in

the tailfan of the crayfish Procambarus clarkii, in order
to demonstrate this simple model for SR. In this system,
a hair located in the tailfan senses water motions which

a(t) =exp[ —(U/D) (l —rtcostuot )],
where rl need not be small, and U is a constant. Using
Eqs. (5) and (7) we obtain

a(t) ao+ g aq cos(qtut+ yv ) .
q l

(s) 12.00

The calculation is now repeated: Since the process is no

longer stationary, we additionally average over the phase
of a(t). The resulting correlation function is the sum of
expression (4), plus oscillations at each frequency to,

2', . . . . In the limit where the pulse width is small, coht

(( l, the expression becomes

[C(r)] -ao(vast)'a(z)+(a, V~t)'

0

8.00 -0 DIi'

4.00

+ —,
' (V~t) g aqcos(qtut),

q

(6)

where [ ] denotes the phase average, and Vu is the
pulse height. The last term in Eq. (6) leads to the signal
feature, a series of &function spikes, in the power spec-
trum with the strength aqVoht /2, while the 8(z) term
yields the broadband noise. The SNR is then the ratio of
the strength of the q=1 spike to the noise background
evaluated at the signal frequency

SNR = IO!ogiu(ai/2au) .

The last step is to relate our rate a(t) to the noise
strength D. As an example, we consider the Kramers-
type formula

0.00 ~ s ~ ~ 5 a ~ s I t I i a ~ s ~ ~ a ~ I s & I a ~ a I ~ I

0.00 0.40 0.80 1.20

Noise Voltage (Vrms)

FIG. 3. The SNR measured on the crayfish mechanoreceptor
(squares) compared to similar measurements made on the elec-
tronic Fitzhugh-Nugumo model neuron (diamonds) and the
theory, Eq. (lO), with U O. IS and rt 4.76 (solid curve).
Note that we have defined the rms noise voltage 4(g & v2D.
Both data sets were obtained for a stimulus frequency of 55 Hz.
In the case of the crayfish, the stimulus strength was adjusted to
be just barely detectable in the absence of external noise. For
the electronic model, the signal strength was smaller than the
value necessary for spontaneous firing.
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are transduced into a train of action potentials (firing
events) in the sensory neuron connected to the abdominal

ganglion. In our experiment, a piece of the tailfan con-

taining the hair, nerve, and abdominal ganglion was ex-

cised and mounted on a motion transducer in a bath of
saline solution. A neuron with low internal noise, i.e., low

spontaneous firing rate, was chosen in order to emphasize

the effects of the externally applied noise. A combination
of periodic and random motions was applied to the hair
relative to the solution. Extracellular recordings from the
nerve were made using standard techniques. The action
potentials were converted into rectangular pulses of 1.0 V

amplitude and width 3.0 ms, digitized, and processed
with a program identical to the simulations. The experi-
mental details have been described elsewhere [11]. An

example power spectrum is shown in Fig. 2(b), and com-

pares favorably with the one generated by the FN model.
The SNR's were obtained from a series of power spectra
measured at differing external noise intensities in a
manner identical to the simulations. The squares in Fig.
3 show the crayfish SNR's measured from one cell [15].

We have chosen the FN model as an example excitable
system governed by the dynamics defined in Fig. 1, which

is also familiar to neuroscientists. A detailed description

of this simulation will be published elsewhere; however,

some data are shown by the diamonds in Fig. 3. One not-

able difference between these two data sets is that the

crayfish SNR's do not fall rapidly as the noise approaches
zero, but instead asymptotically approach some nonzero

value on the vertical axis. We believe this is due to the

residual internal noise which, even in a neuron selected

for low spontaneous rate, cannot be avoided. %e have

noticed that this zero noise asymptotic value is larger for
neurons with larger internal noise, and the maximum

disappears entirely for neurons which are too spontane-

ously noisy. Efforts are currently under way to quantita-

tively relate the parameter values used in the simulations

and the theory to the voltages input to the motion trans-

ducer and to the FN model.
%'hile our simple theory captures the broad features of

the data, it is clear that detailed agreement is lacking. Of
course, one reason is that the Kramers-type formula (8)
is not expected to be correct in detail for these two sys-

tems. Another is that our model neglects a relevant time

scale, namely, the refractory period. Physically, this

means that during the deterministic reinjection, firing

events are impossible; our model neglects this effect be-

cause we assumed statistical independence. This effect is

especially important when the firing rate becomes compa-
rable to the reinjection rate ht ', that is, at high noise

levels. As expected, Fig. 3 shows that the high-D limit in

particular seems to deviate from the theoretical fit: The
experimental data lie above the theory for large D ~here
more threshold crossings, which in this range contribute

to the randomization of the output, are missed during the

refractory period. Work is currently under way to in-

clude the statistical correlations induced by the presence

of a finite refractory time.
%e can compare our results with earlier discussions of

SR in single-well systems. The monostable SR discussed

by Stocks et a/. is rooted in inertial effects in the under-

damped-oscillator limit [13]; in contrast, our single-

trigger SR is dominated by large superthreshold events„

and the only important "oscillation" is the deterministic
reinjection to the rest state. Meanwhile, Gitterman and

Weiss [12] focused on the statistics of single escape
events, without any reinjection mechanism. Thus, their
study is relevant to a more careful modeling of the escape
rate a(t), while we used a simpler adiabatic Kramers-

type formula in our example.
Finally, although we have focused on the crayfish neu-

ron, we emphasize that single-trigger dynamics is also en-

countered in settings more familiar to physicists. These
include Josephson junctions biased below the critical
current and semiconductor lasers pumped below the las-

ing threshold. [The latter obeys rate equations very simi-

lar to Eq. (2).] Since the "modified shot effect" theory

applies equally well to any system having excitable dy-
namics and deterministic reinjection, we expect SR to be

observable in these systems as well.

We warmly acknowledge useful discussions with

Steven Strogatz, Laszlo Kiss, Andre Longtin, and Peter
Hanggi. This work was supported by the 0%ce of Naval
Research Grants No. N00014-91-J-1257 and No. NO-

0014-90-J-1 327.

[1] B. McNamara and K. Wiesenfeld, Phys. Rev. A 39, 4854
(1989); P. Jung and P. Hanggi, Europhys. Lett. 8, 505
(1989); L. Gammaitoni, F. Marehesani, E. Manicheila-

Saetta, and S. Santucci, Phys. Rev. Lett. 62, 349 (1989).
[2] See, for example, Proceedings of the NATO ARK Sto

chastic Resonance in Physics 8 Biology, edited by F.
Moss, A. Bulsara, and M. F. Shlesinger [J. Stat. Phys. 10,

I (1993)].
[3) F. Moss, in "An Introduction to Some Contemporary

Problems in Statistical Physics,
" edited by G. H. %'eiss

(SIAM, Philadelphia, to be published), and references

therein.
[4] K. Wiesenfeld, in "Stochastic Processes in Astrophysics,

"
edited by J. R. Buchler and H. E. Kandrup (New York

Academy of Sciences, New York, to be published), and

references therein.
[5] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453

(1981); R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani,

Tellus 34, 10 (1982); C. Nicolis, Tellus 34, I (1982).
[6] A. Simon and A. Libchaber, Phys. Rev. Lett. 6$, 3375

(1992).
[7] J. Grohs, S. Apanasevich, P. Jung, H. Issler, D. Burak,

and C. Klingshirin, Phys. Rev. E (to be published).

[8] S. Fauve atid F. Hesloi, Phys. Lett. 97A, 5 (1983); B.
McNamara, K. %'iesenfeld, and R. Roy, Phys. Rev. Lett.

6(1, 2626 (1988).
[9] A. Longtin, in Ref. [2], p. 309.

[10] A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500

2128



VOLUME 72, NUMBER 14 PHYSICAL REVIEW LETTERS 4 APRIL 1994

(1952); R. Fitzhugh, Biophys. J. I, 445 (1961); J. S.
Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50,
2061 (1962).

[I I] J. V. Douglass, L. Wilkens, E. Pantazelou, and F. Moss,
Nature (London) 365, 337 (1993).

[12] M. Gitterman and G. H. Weiss, in Ref. [2], p. 107.
[13] N. G. Stocks, N. D. Stein, and P. V. E. McClintock, J.

Phys. A 26, L385 (1993).
[14] See, for example, S. O. Rice, in Selected Papers on Noise

and Stochastic Processes, edited by N. Wax (Dover, New

York, 1954).
[15] We have detected evidence for SR using external noise in

a total of 11 cells out of the 12 tested. Cells with too
large an internal noise, as noted from the spontaneous
firing rate, seldom show evidence for SR. In these cells
the SNR's simply decrease monotonously with increasing
external noise. We speculate that such cells are already
operating at the optimum (internal) noise level, and con-

sequently the addition of external noise cannot improve

signal detection.

2129


