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The Role of the Vapnik-Chervonenkis Dimension
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Bounds for the generalization ability of neural networks based on Vapnik-Chervonenkis (VC) theory

are compared with statistical mechanics results for the case of the parity machine. For fixed phase space
dimension, the VC dimension grows arbitrarily by increasing the number K of hidden units. Generaliza-

tion is impossible up to a critical number of training examples that grows with the VC dimension. The

asymptotic decrease of the generalization error ~ comes out independent of K and the VC bounds

strongly overestimate ~. This shows that phase space dimension and VC dimension can play indepen-

dent and diNerent roles for the generalization process.

PACS numbers: 87.10.+e, 05;90.+m

Statistical mechanics has been successfully applied to
the performance of feedforward neural networks. Based
on Gardner's phase space approach [1], mainly two im-

portant questions have been treated in the last years. (1)
How many random input/output relations can be learned

by a network? This is the storage capacity problem (2).
How well can a network infer an unknown classification
rule from examples? This defines the generalization
problem (for a review, see [2-4]). So far, within this ap-
proach, no general relation between the two topics has
been established. However, an important connection be-
tween the ~orst ease generalization ability and a quantity
that has a close relation to the storage capacity has been
discovered by computer scientists [5,6]. This is the so-
called Vapnik Chert on-enkis (VC) dimension dye, which
is the size of the largest set of input patterns for which all
2 "' combinations of binary output labels can be learned

by the network.
A remarkable combinatorial theorem, Sauer's lemma

[7], yields an upper bound for the number of possible out-

put combinations in terms of dye. In the thermodynamic
limit dye ~, this theorem implies that if the number m

of input patterns exceeds 2dyc, then only an exponential-
ly small fraction of all possible 2 combinations can be
realized. Thus, for large dye, the probability that a ran-
dom set of output labels can be stored is vanishingly
small, if m & 2dyc. Thus, for the storage capacity rela-
tive to the number N of weights, one finds a, (2dyc/N.

If the output labels are not random, but are provided

by a teacher's classification rule, that can be realized by
the network, then, the results of [5,6] state that good
inference of the rule is possible, if m, the size of the train-
ing set sufficiently exceeds dvc. A recent calculation for
a perceptron [8] has shown that in the worst case, non-

trivial generalization begins when the number of training
examples exceeds the capacity. One can say, that "gen-
eralization begins, when learning ends" [9]. Networks
with large capacities and VC dimensions seem to realize
more complex mappings than those with smaller capaci-
ties.

The VC method provides exact bounds for the generali-

zation error which hold for any network and learning al-

gorithm that properly learn the training examples. In

contrast to such worst case studies the methods of statisti-
cal physics naturally aim at an average case learning
scenario. Here, one may think of a network that is gen-
erated by a stochastic (Gibbsian) training algorithm.
Applied to networks with continuous weights that infer a
learnable rule, the latter methods yielded generalization
errors pg that decay asymptotically like ~ a ', as
a ~. Here a=m/N and N is the number of indepen-
dent, adjustable network parameters (weights). N equals
the dimension of the phase space [4,10,11]. Unlike the
worst case results, for Gibbs learning generalization be-

gins mostly right at a 0. Nevertheless, one could expect
that also here the VC dimension plays a characteristic
role for the decay of the generalization error. Actually,
by a combination of VC methods and information
theoretic ideas, recently, the rigorous and general upper
bound

aG ~ 2(m/d vc)

for the performance of the Gibbs algorithm was derived
in [12]. If dye scales like N, then (1) compares well with
the statistical mechanics results. In fact, for a single lay-
er perceptron, one has dye N [13], and the asymptotic
result a=0.62a for large a and a spherical input distri-
bution is not much overestimated by the general bound
(1).

In thig Letter I will give an example where this is not
the case. I will study a model where the VC dimension
and the dimension of phase space can differ substantially.
This happens for a parity machine of N adjustable
weights and K hidden units. For the tree architecture, it
is known [14] that the storage capacity a, increases with
the number of hidden units like =In(K)/In(2) as K
Since dye& 2 Na„ the VC dimension will, for fixed
number N of weights, grow at least logarithmically in K.

The question arises whether then the VC dimension is
the main relevant parameter that determines the shape of
the learning curve. To answer this question, I will

present a calculation of the generalization error for gen-
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eral K. The case K=2 has been investigated recently in
[15].

The parity machine with a tree architecture is com-
posed of K independent subperceptrons, corresponding to
nonoverlapping receptive fields, each with a coupling vec-
tor w~ of N/K weights. For a picture, see Fig. 1 of Ref.
[14]. The jth branch of the tree receives a number of
N/K inputs, abbreviated by the vector xj.. The output cr

of the parity machine is computed as the product of the K
hidden units via

K

cr = g sgn(w" x, ) .
j~]

For the generalization problem, I assume that the net-
work is trained on (ri examples, where the output labels

=[crI, . . . , cr } are provided by a teacher parity ma-

chine with couplings w' [wI, . . . , w('r}. In the thermo-

dynamic limit, the learning curve of this neural network

can be calculated from an entropy, utilizing the replica
method. This calculation turns out to be rather simple in

the Bayesian framework of learning [4,10,12,16] where

an average over the classification rule of the teacher w' is

included.
As in [1], one defines the phase space volume V(cr )

of all networks which correctly learn a training set of m

classification labels. I assume further that the total

phase space has a volume normalized to 1, implying
V(cr ) 1. The entropy per weight, averaged over

inputs and rules, is

S -N - '((In V(a )),&„.

The average over w' gives a probability to each combina-
tion of outputs cr™that equals V(cr ) [10]. Thus, replac-
ing the average over the rules by a sum over outputs, one
finds a simple expression [4,16,17] in the language of re-

plicas:

S=N 'g(V(cr ) lnV(cr ))„

=N ' lim in+(V"(cr ))„. (2)
n I Bn nm

By averaging over the rules m', teachers and students ap-
pear in a completely symmetric way: Both are just ran-
domly drawn networks that are consistent with all exam-
ples. This is reAected in the n 1 limit of the replica
formula (2), where the teacher is an additional replicon
[17]. From this symmetry, for a spherical distribution of
inputs, a priori only a single order parameter enters the
subsequent calculations [18], which describes both the
overlap between teacher and student and between two

typical student networks. In replica symmetry [19],one
obtains a similar expression as in [14] for the entropy of
the parity machine

S =extrlvl —ln(1 —q)+ +a hm M„
1

2 2 n I cln

with
K K K

M„=2& + Dt; Trl, -~I18 g cr, g H(cr;yt;)
i l i

(4)
Dt =(dt/J2z)e ' ( and H(x) =J„Dt. Finally, y (q/
I
—q)', and q (K/N)wf. w( is the overlap between

two replicas a and b of the same subperceptron.
The expression (4) as it stands is not very suitable for

practical calculations when K is su%ciently large. I will
derive a more convenient expression before taking the
limit n

Obviously the 8 function in (4) only contributes if
for an even number of i, cr; = —l. Fixing the set [t;}
for a moment, it is helpful to think of p; =H( —yt;)
as a probability that cr; = —

1 and p;+ H(yt; ) = 1—H( —yt;) as the corresponding probability for cr; + l.
Then clearly

K K

Trl, - ~ I18 g cr; g H(a; yt; ) =Pr(even no. of cr; = —1) .
-i 1 i

By a direct expansion, one finds

K K

g [2H(yt;) —1]=g (p;+ —p; ) =Pr(even no. of o; = —1)—Pr(odd no. of o; = —1) .

Thus, one obtains
' nK K n

M =2J IID«2 " I+II[2«rt ) —I] =22 2 "
J „Dt[2H(rt) —I]'

1 I i I
l

K

where for integer n, ((")=0 for all l ) n Continuing to. noninteger n, one uses lim„(c|/Bn((") =(—)'I/l(l —1), for
l ~ 2. By the symmetry of the H function, the terms with odd l vanish and the entropy (4) is found from maximizing
[20] the expression

S(q) =—ln(1 —q)+ —+a —ln(2)+ g J Dt[2H(yt) —1]1 1
f+ OO

2 2 (-I 2l(2l —1)

K
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~ = -,
' [I —(I —2b) "]. (6)

For large a, the order parameter q will be close to 1 and
the asymptotic behavior of eG can be found by expanding
(5) to first order in 1

—[1 —2H(yt)] '. This leads to the
result

aG= '
„I dr H(t) in[H(t)] ' a ' =0.62a2

The generalization error sg as a function of q is obtained

by summing over all events, where an odd number of stu-
dent subperceptrons disagree with their teacher counter-
parts. The probability for a disagreement on each of
the independent subperceptrons is b = (I/x) arccos(q).
Hence,

dynamically stable for sufficiently small a. For q 0,
the entropy (5) is

r

1 2qS(q) = — +a —ln (2)+—
4 2 lr

' K

For E =2, the state with q=0 is locally stable, if a
& x /8 and a second order transition to nontrivial gen-

eralization (eG ) —,
' ) occurs for ao(2) =~ /8. For K ) 2,

q=O is locally stable for all a, suggesting a first order
transition. To have generalization with nonzero q, the
corresponding entropy S(q) must exceed the value
S(q =0) = —aln(2). The learning curves for K =1,2, 3,6
are displayed in Fig. l. cG begins to decrease at a critical
value ao(K), which grows with the number K of hidden
units.

independent of K. It is the same as for the simple per- To ""derstand this growth quantitatively, I will discuss

ceptron (K 1). This might suggest that the generaliza- t"e case when K is large. Then, aG is different from —,
'

tion ability of the network is not much affected by the only, if b in (6) is close to zero, i.e., for q= l. To get a

number of hidden units and thus by the storage capacity proper scaling «r K ~, I assume that b=K, such

and VC dimension. that bK=A, is a new finite order parameter [21]. This

However, as has been shown for the case K=2 [15], scaling yields the generalization error

the learning curve of the parity machine exhibits a
eo = —'(1 —e ")

nonsmooth behavior as a function of a: Because of inter-
nal symmetries, the state with q=O (ao =

2 ) is thermo- With 8=J2/mal —q, the ansatz implies the following
asymptotic scaling of the entropy (5):

S= —In(K) —ln(a) . (8)

This solution becomes globally stable, if the entropy (8)
exceeds the value S(q 0) = —a ln(2). Thus, for large

S= —In(K)+In(A, )+a —ln(2)+ g exp
1

I-I 2l(2l —1)

The large negative entropy contribution —ln(K) makes
the state A, q 0 globally stable for any finite a as
K ~. On the other hand, a locally stable state with
nonzero A, fulfills 8S/NO, whi, ch is clearly independent
of K. For large a, this equation yields A, cx:a '. The cor-
responding entropy is to leading order

dt [1 —[2H(yt) —I]

t E, the transition can be found from the equation

1 n(ao) + 1 n(K)
ln(2) (9)

Equation (9) gives also a quite reasonable approximation
for smaller K. For example, one finds ao(3) =3.31 and
ao(6) = 4.87 compared to the exact results 3.21 and 4.95.

The solution of Eq. (9) is displayed in Fig. 2 together
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FIG. 1. Generalization errors for, from left, K 1 (percep-
tron) and K 2, 3,6.
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FIG. 2. Transition point ap(K) to nontrivial generalization
(full line) from the approximation (9), and storage capacity
a, (K) (dashed line, from [14]).
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with the storage capacity taken from [14]. As can be
seen, both quantities grow roughly with the same slope
and for K ~, one gets an=in(K)/In(2)=a, . Here,
one finds a behavior for the average case Gibbs learning
that resembles the prediction of VC theory for the ~orst
case scenario: Generalization becomes possible only
above capacity or VC dimension.

This result sho~s that the dimension of phase space
and the VC dimension can play rather different and in-

dependent roles for the generalization performance of a
multilayer net. While the VC dimension of the parity
machine roughly determines the minimal number of ex-
amples that is needed to achieve nontrivial generalization,
the asymptotic scaling of the learning curve only depends
on the dimension of phase space.

It is interesting to compare this behavior with a result
found for the committee machine with nonoverlapping re-
ceptive fie]ds. As shown in [I I], for K ~ the learning
curve converges to a limiting function that is smooth and

decreasing. This may indicate that the capacity [22-24]
and VC dimension for this machine does not diverge for
K but rather converges to a finite value.
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