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Large Loops of Magnetic Current and Confinement in Four Dimensional U(1)
Lattice Gauge Theory

John D. Stack
Department of Physics, University of Illinois at Urbana C-hampaign, 1110 West Green Street, Urbana, Illinois i)1801

Roy J. Wensley
Department of Mathematical Sciences, Saint Mary's College, Moraga, California 9)575

(Received 31 August 1993)

We calculate the heavy quark potential from the magnetic current due to monopoles in four
dimensional U(1) lattice gauge theory. The magnetic current is found from link angle configurations
generated in a cosine action simulation on a 24 lattice. The magnetic current is resolved into large
loops which wrap around the lattice and small loops which do not. It is shown that the long range
part of the heavy quark potential, in particular the string tension, can be calculated solely &om the
large loops of magnetic current.

PACS numbers: 11.15.Ha, 12.38.Gc

In this paper, we report new results on confinement via
monopoles for U(1) lattice gauge theory in four dimen-
sions. Our main result is that the confining part of the
heavy quark potential, in particular the string tension,
is determined solely by large loops of magnetic current.
It has been established for some time that large loops
which extend over the entire lattice are present only in
the confined phase of the theory [1,2]. Their presence
can now be quantitatively tied to the string tension. Our
work is carried out on a 244 lattice, near the deconfining
transition.

The role of monopoles in U(1) lattice gauge theory is
seen most clearly using the Villain [3] or periodic Gauss-
ian form of the U(1) theory. Under a dual transforma-
tion, the usual link angle description goes over into one
involving an integer-valued magnetic current rn„(x), de-
fined on the links of the dual lattice [4]. The link angle
path integral becomes a sum over all possible configura-
tions of magnetic current. In this monopole representa-
tion, the system can be visualized as a plasma of mag-
netic monopoles moving on Euclidean world lines, inter-
acting via photon exchange.

In either representation, a Wilson loop calculation is
needed to determine the heavy quark potential. In the
link angle representation, a Wilson loop is specified by
the exponential of a line integral:

(
w(RT) = (exp i) 8„,(2:)J„(z)

)
where the integer-valued electric current J& is nonvan-
ishing on the rectangular R x T loop contour, and ()s
denotes the expected value taken over configurations of
link angles 8„(x).

In the monopole representation, the determination of
a Wilson loop involves the exponential of an area inte-
gral over a surface with the loop contour as its bound-
ary [4,5]. The electric current J„ is first expressed as the

curl of a Dirac sheet variable [6]; J„=B„D&,where B„
denotes a discrete derivative. The sheet variable D„„is
nonunique. For

~ J&i = 1, a specific choice is made by
setting D„, = 1 on the plsquettes of an (arbitrary) open
surface with boundary J„,and D„„=0 on all other pla-
quettes. The area integral represents the dual fiux set up
by the magnetic current through this surface. To com-
pute it, we define the magnetic vector potential

A„(x) = ) v(x —y)m„(y), (2)

where v satisfies —B Bv(x —y) = 6~ „The fi.eld
strength is given by F„„=B„A —B„A„.In terms of D„„
and the dual field strength F„'„(x)= ze„„pF p(x), the
monopole representation of a Wilson loop is finally given

by

where () denotes the sum over configurations of mag-
netic current. The factor 2' which appears in the ex-
ponent of Eq. (3) arises from the Dirac condition on the
product of electric and magnetic charge, and guarantees
that the value of a Wilson loop is independent of the
surface chosen to define D„„. The prefactor in Eq. (3)
describes one photon exchange between the quark and
antiquark:

W~h(R, T) = exp ——) J„(x)v(x —y) J„(y), (4)

where the electric coupling e~ is related to the coupling
P~ in the Villain action by e~ = 1/Pv. The factor
W~i, (R, T) contributes a purely perturbative Coulomb
term to the heavy quark potential.

W(R, T) = Wi)t, (R, T)
fi2%

x exp D„„xF„'„x ~, 3
)
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Fortunately, the numerical evaluation of Wilson loops
via Eq. (3) does not require a direct simulation in terms
of the magnetic current m&(x). This is impractical ow

ing to the long-range interactions generated by photon
exchange between the monopole currents. DeGrand and
Toussaint [7] showed how to locate monopoles directly
in configurations of link angles. In their procedure, the
plaquette angle 8»(x) = 0„8 —8„8„ is resolved into
a fiuctuating part 8„(x), and an integer-valued Dirac
sheet variable m„', (x):

8„(x)= 8„„(x)+ 2vrm„', (z), (5)

where m„'„(x)=ze»~pm~p(x) and 8»(x) 6 (—~, ~).
The magnetic current is then given by m„(x)
= B„m»(x) Th. is procedure allows only values of m„
c [+2, +1,0], whereas in principle all integer values are
allowed. However, at values of the coupling near the
deconfining transition, the values m„= +1 are over-

whelmingly dominant; even m„= k2 occurs only a small
fraction of the time. Thus negligible error is caused by
omitting higher values of m~.

The derivation of Eq. (3) as an exact formula is only

possible for Villain's form of the U(1) theory. On the
other hand, Wilson's cosine form [8] of the U(1) action
can be simulated much more efficiently. In our previous

work [5,9], we have shown that Villain action results can
be extracted from a cosine action simulation, if a sim-

ple coupling constant mapping is used. More precisely,
a simulation using the cosine action at coupling P~ is

equivalent to a Villain action simulation at coupling Pv,
with Pv related to P~ by [3,10]

1/P 21
~

0(Pw)
(6)

&Ii(&iv))
'

where Is and Ii are modified Bessel functions. Equation

(6) determines the value of 1/Pv, and hence e2, which
result from a cosine action simulation at a given value
of P~. The factor W~h in Eq. (3) is then completely
determined. The magnetic current is identified from the
cosine action link angle configurations and the result used
to calculate the second factor of Eq. (3). The Wilson
loops calculated in this manner using the cosine action
and Eq. (6) difFer from pure Villain action results by a
harmless perimeter term. The R-dependent terms in the
potentials agree within statistical errors [9,11]. In the
present work on a 244 lattice, we have again checked that
potentials deduced directly from link angles and Eq. (1)
agree with those obtained f'rom the magnetic current and
Eq. (3).

The link angle configurations were generated using a
heatbath algorithm [12]. The calculation of A„(x) from

m„(x) in Eq. (2) was done using a four dimensional vec-
torized fast Fourier transform [13,14]. The R x T rec-
tangle lying in the %'ilson loop plane was used as the
defining surface for D„„.Magnetic current configurations
were saved every 10 sweeps. After Wilson loops were

obtained from these configurations using Eq. (3), poten-
tials were extracted using standard methods. The heavy
quark potential V(R) was obtained from a straight line
fit of ln W(R, T) vs T, over an interval T;„(R)to T,„,
where T;„(R)= R+2 for R = 2, 3, and R+ 1 otherwise,
while T „=16. To determine the string tension o and
Coulomb coupling a, the potentials were then fitted to a
linear plus Coulomb form, V(R) = oR —n/R+ Vo, over
the interval R = 2 to R = 7. Errors in physical quanti-
ties were estimated using both the jacknife method and
binning the data into bins of various size.

It is well established for U(1) that appreciable correla-
tion lengths occur only in the immediate vicinity of the
deconfining phase transition. The location of the phase
transition moves to larger values of P~ as the lattice
size increases, in a manner roughly consistent with finite

size scaling theory [2,15]. Since only lattices of size up
to 16 were available in the published literature when
we began our work, it was first necessary for us to lo-

cate the transition for a 244 lattice. To do this, we per-
formed a series of runs with various initial configurations
for 1.0100 ( P~ ( 1.0120, and monitored the value of
the 1 x 1 Wilson loop, W(1, 1). For Pg & 1.0114, the
system always reached a state with W(l, 1) 0.65. For

P~ & 1.0112, the system always reached a state with
W(1, 1) ~ 0.63. Subsequent analysis of the heavy quark
potential showed these two states to be deconfined and
confined, respectively. While we have not precisely lo-

cated the deconfining phase transition, consistency with
our results requires that the transition be in the interval
1.0112 & P~ ( 1.0114 for a 244 lattice.

To avoid problems associated with long autocorrela-
tion times that occur near the transition, we chose to
use a run of 20000 sweeps at Piv = 1.0103 for the re-

sults to be presented below. At this value of P~, the
correlation length is large enough to observe the be-

ginnings of continuum behavior, but small enough to
avoid problems with long autocorrelation times. The
autocorrelation time 7 measured from the 1 x 1 Wil-
son loop was approximately 100 sweeps. In Fig. 1,
we show the heavy quark potential determined from

Eq. (3) for Piv = 1.0103 using 936 configurations of mag-
netic current. A linear-plus-Coulomb fit gave a string
tension of o = 0.058(2), and a Coulomb coupling of
e = 0.30(2). The total number of links carrying mag-
netic current at this P~ was 98400(800). For compar-
ison, we also show in Fig. 1, the potential determined
from Eq. (3) for the deconfined P~ value, Piv = 1.0114,
where 724 configurations of magnetic current were ana-

lyzed. At this value of Pii, the string tension was statis-
tically zero, while the Coulomb coupling was a. = 0.24(2).
The total number of links carrying magnetic current was

57940(40).
We now turn to the resolution of the magnetic current

into loops. Every 20 lattice sweeps, magnetic current
loops were individually identified and catalogued. The
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FIG. 1. The quark potential calculated using the mag-

netic current configurations for Pgr = 1.0103 (triangles)
and Pw = 1.0114 (squares). The solid lines are lin-

ear-plus-Coulomb fits to the potentials.

R

FIG. 2. The potential calculated using only the large
monopole loops (triangles) and using only the small monopole
loops (squares). The photon contribution from W~h has not
been included.

loop-finding algorithm proceeded by choosing a nonzero
current link, m„(xo), and following the current it car-
ried through the lattice until a loop was completed
by a return to the site zo. This process was carried
out repeatedly from difFerent starting points and ended
when the entire configuration of current hsd been re-
solved into loops. The algorithm was deterministic:
when looking for an outgoing current link at a par-
ticular lattice site, the direction p = 1 was chosen
first, followed by y, = 2, 3, 4. Intersections of loops
did occur (i.e., more than one outgoing link associ-
ated with a site), so the set of loops identified was not
unique. However, self-intersections of loops were rela-
tively rare, occurring with approximately the same prob-
ability as self-intersections of a purely random walk in
d = 4 [16].

The confined state is distinguished by the presence of
macroscopic loops containing thousands of links. These
do not occur in the deconfined state. Given the finite
size of the lattice, it is quite likely that a loop with thou-
sands of links will wrap around the lattice in one or more
directions. Periodic boundary conditions were used, per-
mitting topologically nontrivial loops. As a convenient
way to distinguish large and small loops, the net current
was measured for each loop:

A„= ) m„(x).
xgloop

Loops which wrap around the lattice have a nonvanishing

A„, with components of A„which are integer multiples
of the lattice size along an axis; A„=n„N, for a cubic
lattice of size N4. While an individual loop can have a
nonvanishing A~, a net current cannot actually occur on
a finite lattice, so &he sum of A& over loops must vanish
identically. It was typical for a loop with nonvanishing
A& to be wrapped around the lattice several times in
more than one direction. Values of ~n„~ up to 10 were

observed.
At P = 1.0103, the loop analysis was carried out for 380

configurations. Loops were written into two sets of files,
one set containing only those loops with nonvanishing

A„, the other containing only loops for which A„—:0. Of
the total of 98400(800) links carrying magnetic current,
51 000(400) were in loops with finite A„, the rest in loops
with vanishing A„. For vanishing A„, the average total
number of loops was 6210(6), of which 3507(4) were in
the form of elementary loops with four links. Over 9070
of the links in this class of loops occurred in loops with
60 links or less. In contrast, for A„ finite, the average
number of loops was only 4.6(l), so the typical loop of
this type carried tens of thousands of links. Motivated
by these results, in what follows loops with finite A„are
simply referred to as "large, " and those with vanishing

A„, "small. "
Since large loops occur only in the confined phase, it

is natural to ask if they can explain the long range, con-
fining part of the heavy quark potential. To investigate
this, we computed the heavy quark potential again us-

ing Eq. (3), but for each configuration, including only
the magnetic current from large loops. The results are
shown (omitting the photon factor W~h) in Fig. 2. A
linear plus Coulomb fit to the resulting potential gave
a string tension oi = 0.056(2), and a Coulomb term
ni = 0.09(1). The string tension is within statistical
errors of the value 0.058(2) found earlier from the heavy
quark potential calculated using the full magnetic cur-
rent. Next, we carried out a similar calculation using
only the magnetic current from the small loops. This
produced the rather flat potential also shown in Fig. 2. A
linear plus Coulomb fit to this potential gives zero string
tension within statistical errors [cr, = 0.0000(6)], and a
Coulomb term cr, = 0.06(1). The result of these two fits
gives strong evidence that in the long distance region,
there is a clean separation between the contributions of
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the two classes of loops. Only the large loops containing
many thousands of links contribute to the confining part
of the potential. Although the two classes of loops were
found using a topological criterion, we believe loop size
is the crucial factor, not topology. Whether this is in
fact true could be tested in a simulation on a lattice with
boundary conditions which forbid loops with nonzero A„.

In the fits described above for Piv = 1.0103, the
large loops required a Coulomb term with coupling a~ =
0.09(1), while the small loops required a Coulomb term
with coupling a, = 0.06(l). In addition, there is a
Coulomb term coming from the W&i, factor in Eq. (3).
Using Eq. (6) to evaluate Pi (1.0103), gives tiki, = 0.13 as
the Coulomb coupling arising from W&~. Simply adding
the various terms, we obtain n&i, + n, + at = 0.28(2),
consistent with our previous result of 0.30(2) obtained
with the full magnetic current.

The results on the string tension and Coulomb cou-

pling are consistent with additivity of the potential over
the contributions from photons, large loops, and small
loops. In Fig. 3, we compare the potential determined
from the full magnetic current and W~i, (shown previ-
ously in Fig. 1), with the potential obtained by sum-

ming the contributions from W&h, large loops, and small

loops, plus a constant. A glance at Fig. 3 shows that
the agreement is quite good. Additivity of the potential
implies that the contributions from large and small loops
factor in the average over configurations. To check factor-
ization, we performed a fit to the "potential" extracted
from the ratio of Wilson loops assuming factorization to
Wilson loops calculated with the full magnetic current:

(Wt(R, T)) {W,(R, T)) /(Wt(R, T)W, (R, T)) . (7)

The string tension and Coulomb coupling resulting from
this were both zero to within statistical errors. This
shows that factorization and therefore additivity of the
potential is consistent with our data. This is not surpris-

ing at large R, where the R dependence comes predom-
inantly from the large loops. However, in the small-R
region, both the large and small loops produce Coulomb

terms, and additivity is not expected to hold as an exact
statement. Nevertheless it appears to be a good approx-
imation and holds within the accuracy of our data.

We have shown that the long range, confining part of
the potential in U(1) is produced by the large loops of
magnetic current. The small loops contribute only to
the Coulombic part of the potential. Still missing is a
physical picture of how the large loops of current disorder
the vacuum and produce the string tension. The fact
that these loops extend over the whole lattice suggests
that there are low mass (perhaps massless) magnetically
charged excitations present in the confined phase. We

plan to report elsewhere on this question as well as how

the magnetic current screens itself. The results obtained
in our work are likely to have an impact on the monopole

approach to confinement in non-Abelian gauge theories.
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