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We present a theory of &ustrated, two-dhnensional, quantum antiferromagnets in the vicinity of a
quantum transition &om a noncollinear, magnetically ordered ground state to a quantum-disordered
phase. Using a sigma model for bosonic, spin- ~, spinon fields, we obtain universal scaling forms for
a variety of observables. Our results are compared with numerical data on the spin —~~ triangular
antiferromagnet.
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A useful classification of two-dimensional, quantum,
Heisenberg antiferromagnets is provided by the struc-
ture of the magnetically ordered ground state: the spin
condensates on the sites can either be collinear or non-
collinear to each other. Collinear magnets have been ex-
tensively studied in recent years and many of their prop-
erties are reasonably well understood. They possess an

O(3)/O(2) order parameter whose fluctuations describe
the low temperature (T) properties of the magnetically
ordered state [1]. The quantum-disordered state has only
integer spin excitations (the spinons are confined) and
spin-Peierls order is expected for certain values of the
single-site spin [2]. The finite-T crossover between these
two states has also been studied in some detail [3].

Less is known, however, about noncollinear antiferro-
magnets, which are the subject of this paper. Exam-
ples include the triangular, kagomh, and square (with
first, second, and third neighbor interactions) lattices.
The magnetically ordered state completely breaks the
spin-rotation symmetry, yielding an SO(3) order param-
eter [4]. Space and time dependent twists of this order
parameter then define three independent spin stiffnesses,
spin susceptibilities, and associated spin-wave velocities.
For simplicity, we will restrict our attention here to mag-
nets with cop/anar spins and an internal symmetry (a Cs„
symmetry on the triangular and kagome lattices, and a
screw axis symmetry for the incommensurate planar spi-
rals on the square lattice), which leads to just two inde-
pendent stiffnesses (p~, p~~), susceptibilities (g~, y~~), and
spin-wave velocities [c~ = (p~/g~)~Is, c~~

= (p~~/g~~) ~Is];
more complicated noncollinear magnets will have similar
properties. The long-wavelength action for the SO(3) or-
der parameter has an SO(3) xO(2) symmetry, the O(2)
being a continuum manifestation of the internal symme-
try noted above [4]. A spacetime dimension D = 2 + e
study of small fluctuations of the SO(3) order parameter
about the magnetically ordered state was performed by
Azaria et aL [5]; they found that the stifFnesses and sus-
ceptibilities became asymptotically equal upon approach-
ing the critical point separating the magnetically ordered
and quantum-disordered phases, with the critical the-

ory possessing an enlarged O(4) symmetry. A large N
theory based upon Sp(N) symmetry [6] found a similar
magnetically ordered state, but was also able to access
the quantum-disordered phase. The latter state was pre-
dicted to be a featureless, fully gapped spin fluid, with
unconfined, bosonic spin-2 spinon excitations. We also
note that there are alternative approaches to the quan-
tum disordered phase [7] which are quite disconnected
from the structure of the ordered state.

In this paper, we shall present a theory of the univer-
sal, finite-T properties of noncollinear antiferromagnets
in the vicinity of the critical point. We will describe
the crossover from the magnetically ordered state, with
its low-lying spin-wave excitations, to the fully gapped
quantum-disordered state via an intermediate quantum-
critical region. Our results are in complete agreement
with some previous studies of the magnetically ordered
state [5] and the quantum disordered state [6], and
establish a fundamental connection between the O(4)-
symmetric critical point of Ref. [5] and the deconfined
bosonic spinons of Ref. [6]; a related connection was
noted recently in Ref. [8]. We will also obtain new re-
sults for the low T behavior of the dynamic structure
factor and uniform susceptibility of magnetically ordered
antiferromagnets.

Our motivation for this study is similar to that for
the analogous recent study of collinear antiferromag-
nets [3]. A given 8 =

z antiferromagnet may be ei-
ther magnetically ordered (ss is expected for the trian-
gular lattice) or quantum disordered (the kagome lat-
tice) [9]. At low T, the magnetically ordered magnet
has thermally excited classical spin-wave fluctuations [the
renormalized-classical (RC) region], while the quantum-
disordered magnet has only activated deviations from its
ground-state properties. At higher T, however, both of
these magnets are expected to cross over to a quantum-
critical [1] (QC) region where classical and thermal fluc-
tuations are equally important. Many properties of this
region are universal, and are thus amenable to numerical
and experimental tests. In particular, there are signif-
icant quantitative difFerences between the QC behavior
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of collinear and noncollinear m.agnets, which are a conse-
quence of the presence of deconfined spinons in the latter.

We begin by presenting our effective action. We choose
to describe the local spin configuration by an SU(2) rota-
tion about a reference ordered state. The choice of SU(2)
rather than SO(3) is significant, and has the immediate
consequence of suppressing the vortices [10] associated
with vri (SO(3)) = Zz for which the SU(2) field is double
valued. This choice is motivated partly by the results of
Ref. [6], where vortices were suppressed in the quantum-
disordered phase by a Higgs condensate. We parametrize
the SU(2) matrix by two complex numbers zi, z2 with
I»l'+ I»l = 1 and write down the most general, long-

wavelength action with an SU(2) x O(2) invariance:

d'xd7. ) —ct„z'g„z—~—"(z'g„z —g„ztz)' .
P=x)T

It is easy to show that g = 1/2ps&, g = 1/2go&, p
(pll

—p~)/p~, p =
(ytl

—yz)/yz, where the superscript
0 denotes bare values; note that if the p„= 0, 8 has
an enlarged O(4) symmetry, and is also Lorentz invari-
ant. The action 8 can be explicitly derived by a long-
wavelength analysis of the models of Refs. [5] and [6];
we have also learned of a recent study of 8 by Azaria
et at. [11]. The staggered spin-structure factor (wave
vectors measured as deviations from the ordering wave
vector G) can be shown to be the Fourier transform of
zRe(z (xi, 7 i)z(x2, 7 2)) . Note that this is quartic in

the z, consistent with the identification of the z quanta
as spin-

&
bosonic spinons.

We studied 8 by generalizing z to an ¹omponent,
unit-length, complex vector, and performing a 1/N ex-

pansion; 8 then has a SU(N) x O(2) invariance, while for

p„= 0 it is invariant under O(2N). This method allows

us to work directly in D = 2+ 1 and access both the QC
and RC regions. Note that the extension to large N is
difFerent from that used in Refs. [8,12].

We expect that 8 possesses quantum-disordered and

magnetically ordered phases (with the z quanta con-

densed) as the couplings (say g ) are varied. A key

property of the present large N expansion is that the
long-distance physics at the critical point at g = g, is

O(2N) symmetric and Lorentz invariant. This is man-

ifested in the magnetically ordered phase (g, & g,) by
the critical behavior of the stifFnesses. Josephson scaling
is obeyed by the f~lly ren«malized pll pi yll y&, all

of which vanish as (g, —g )", where v is the correlation
length exponent [v = 1—16/SNn. 2+0(1/Nz)]. However,

the relative differences between the stifFnesses also van-

ish at the critical point: we defined b, i = (pll
—p~)/p~,

b.2 ——(yll
—y~)/y~, and found

&i =&i((z) ~'+&2((~) ~',

&z = &i((z) ' —2&2((z)

where pi = (2p +p )/3; p2 = (p —p )/3 (these are the
spin-0 and spin-2 combinations under the Lorentz group),

and (g is the Josephson length measured in lattice units.
The positive crossover exponents Pi 2 measure the irrele-
vancy of the p„ terms in 8; the p„are actually "danger-
ously" irrelevant as Ei z control long-wavelength physics
for g & g, . To order 1/N, we found Pi ——1+32/Sz N,
p2 = 1 + 112/15' N [13].

We now present our scaling results for the wave vector
(k) and frequency (~) dependent staggered (y, ) and uni-

form (y„) spin susceptibilities in the vicinity of g = g, .
We restrict ourselves to g & g„although more complete
results have been obtained [14]. We found

2~Naz ( hei (NklsT
Np~ (kBT ( 4zp~

xc, (k, U, x, b, , d ),

y (k, ~) =
I I

kBT C„(k,~, x, hi, 62), (2)

where No is the on-site magnetization at T = 0, 4q„
4i„are universal functions of the dimensional variables
k = hcgk/klsT, cu = hu/kgT, x = NkgT/47rp~. We
found the exponent rl = 1+32/Szz¹ The prefactor of
4, remains nonsingular at g = g, as No (g, —g )P
with 2P = (1+ rl)v. All scaling functions are defined
such that they remain finite as x ~ oo. As before [3],
the argument x determines whether the system is in the
QC (x » 1) or RC (x « 1) region.

An important difFerence in the above scaling forms
from those for collinear magnets [3] is in the value of
g. Here we have g close to unity, while the analogous ex-
ponent for collinear magnets was close to zero. This is a
consequence of the presence here of deconfined spinons:
it is the z quanta which behave like almost free parti-
cles (at T = 0, (ztz) ~ 1/k " with r1 close to 0) while
the staggered susceptibility is a correlator of a composite
operator of two spinons (g, 1/k2 'i with rl close to 1).

We have computed O„C„in a 1/N expansion to linear
order in hi 2. We describe our results as they relate to
various observables.

Correlation length. —As in collinear magnets, we define

the correlation length, (, from the long-distance e "~~

decay of the equal-time spin-spin correlation function.
We found that, to order 1/N, there is a simple rela-

tionship between the values of (' for collinear and non-

collinear magnets. For all values of x, the noncollinear

( is precisely 2 the previously computed ( [3] for the
isotropic O(2N) sigma model. The factor of 2 is a sig-
nature of deconfined spinons. The collinear expression
for ( [3], however, must be used with the eifective values

p, = pz [1+NEi/(2N 2)]) g = y~[1+N—b,2/(2N —2)],
and c = (p, /g) ~; notice also the factor of 4 difFerence

in the coupling constant in 8 and in [3]. For the phys-

ical case N = 2, we have to first order in L~ 2 that

p, = (2pz + pll)/3, c = (2cz + cll)/3, and our RC re-

sult for ( is then consistent with that of Ref. [5].
Static unform susceptibility. —The result for y„ is ob-

tained by evaluating the response to a vector potential
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coupled to the conserved charge of the SU(N) symmetry.
In the RC region (Nk~T && 4z p, ) we obtained

gya ' 1'NXi+X~~& 2Xi N —1 kaT
h q(N+ 1)yg) N N 2zcz

It is worth emphasizing that although we are considering
an essentially classical regime, the T dependence of g„ is
a purely quantum eKect—it disappears if the spin waves
had a classical, thermal distribution.

In the QC region (Nk~T && 4m p, ), we found to order
1N,

gp+ ~58 f 0.31l
~ ~

4z q N)
where 8 = 2 in[(~5+ 1)/2], x = Nk~T/4n p„and a =
0.8+ G(1/N). Note that the slope of the linear in T
term is precisely z~ of that in the O(2N) sigma model [3].
The factor of z is again a signature of spin- z~ spinons and
should be amenable to experimental tests.

Staggered dynamic susceptibility and structure fac-
tor.—In the RC region, the scaling form (2) for y, col-
lapses into a reduced scaling form in which the physi-
cal (, rather than c/kBT, is the most important length
scale [1,3]:

N k/T(N —1)
y, (k, iv)„) =

x ( f(k(, (u„(/c), (3)

where f is a scaling function. Note that computations
were in fact done only to order 1/N —the form at ar-
bitrary N follows from a reasonable guess about the
wave function renormalization of the composite field.
The overall factor in (3) is chosen such that f(0, 0) ='

1 + G(1/N). The behavior of f(x, y) at intermediate
x, y = G(1) is rather complicated, chiefly because spin-
wave velocity also acquires a substantial downturn renor-
malization at k( = G(l) [1]. However, at k( u(/c »
1, velocity renormalization is irrelevant and we obtained

N+1
ln(x2 + y2) N 1

(4)

One can demonstrate that this result for f(x, y) yields
a g, (k, u) which is precisely the rotationally averaged
spin-wave result for the ordered antiferromagnet, as it of
course should be at k( » 1 but k(~ && 1.

We also computed Imp, (k, cu) for real u In the RC re-.

gion, we describe the results using the dynamic structure
factor S(k, u) which satisfies

2

&p) E ~ )
where = is straightforwardly related to 4, introduced
in (2). For experimental comparisons, it is sufficient
to consider the frequency range co & c/(. We then
found:-(k, ~) = u/2~ck for ck && cu (in this region
of k, collisionless Landau damping is dominant), and

:-(k,u) oc (cu(s/c) [(N —1)k~T/4vrp, ]
l for

ck ~ cu (the dominant contribution is the damping of
quasiparticles).

Now the QC region. Here we restrict our results to the
critical point x = oo, and negligible anisotropy (b.q 2 =
0) F. or hck, ~ && k~T we obtained

(6)
16[k —(V+ ib)z]' —&)z

where AN = 1+ G(1/N). At small k and ~, we have

Rec, = (y 5/16m 8)jl —[k (1 + 28/~5) —u ]/128z
+ ) where stand for higher powers of k, V and for
regular corrections in 1/¹ For Im@, we obtained the
following asymptotic limits for large N:

'
AN sin(zrl/2) e(Vz —k )

, V)+1,
16 (~z k )1-q/z
~-A:/2

, U«1, k»1,
, 8

where 8(x) is a step function. In both cases, Landau
damping is dominant. Finally, when both U « 1 and
k « 1, quasiparticle excitations are overdamped snd we
only know that Im@, oc V.

In the T = 0 quantum-disordered phase, Imo, shows
a clear signature of deconfined spinons —the spectral
weight at fixed k is a broadband continuum rather than
the delta-function peak present in collinear magnets [14].

Local susceptibility and spin-lattice mlaxation. —The
local dynamic structure factor S(u) is given by S(u) =
f dzk S(k, ur)/4z2. Simple inspection then shows that
for u c( ~, the integration over momentum is also
confined to k ( ~ and therefore S(u) is a universal
observable. The small frequency limit of S(u) is di-
rectly related to the spin-lattice rellcation rate of nuclear
spins coupled to electronic spins in the antiferromagnet:
1/Tq oc S(~ ~ 0). In the RC region, we find, using
our previous results for the scaling functions, that for
Q) ~

N'( ((N -1)k T& ('"+""'"-"
S(cu) oc ~ (7)

4&ps )
For N = 2, we then have 1/Tq oc Tr/2 (.

Deep in the QC region, we found

4nhNoz (NkgyTit" K(V)
Np~ ( 4~p~ ) 1 —e—~'

where K(V) = VB~ sin(xrl/2)/32m. at V && 1, and
KPu) = UCN (~5—1)/64m. at V && 1. The factors BN and
CN both behave as 1+Q(1/N). Clearly then, 1/Tq oc T".

Static structure factor.—Unlike collinear magnets, the
static structure factor S(k) = fCkuS(k, u)/2z in non-
collinear antiferromagnets is nonuniversal because the
frequency integral over quantum fluctuations is diver-
gent. This follows from the behavior at large frequencies
where S(k, u) oc 1/u2 " and rl & 1. The nonuniversal-
ity is, however, more relevant for the QC region, where
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T is the only scale for fiuetuations; in the RC region, (
is exponentially large, and there is a universal contribu-
tion to S(k) from classical fiuetuations which scales as
(z. In the RC region we then have S(k) k~Tg, (k, 0),
where g, (k, O) is given by (3). At k = 0 this yields
S(0) ~ TzN/(N i) —(2 For N 2 S(0) oc T4(&.

Application to the S =
z triangular antiferromagnet.—We performed a 1/S expansion on this antiferromag-

net to obtain the T = 0 values of p~, p~~~, y~, y~~ (ail
to order 1/S), and No (to order 1/S2). For S =

z this
gave us No = 0.266, y1 = 0.09/Jaz, y = 0.084/Jaz
p, = 0.086J, and c = (p, /y) ~ = 1.01Ja. For the uni-
form susceptibility in the RC regime we then obtained
y„= (glj~/ha) [0.08/J+ 0 07k'. T/J + G(T /J )]. On
the other hand, in the QC regime, we have y„
(gpgy/ha) [0.14k~T/J + 0.07/J (k~T/2vrp ) ~'+

]

The temperature dependence in the subleading term is
likely to be quite small in the region of experimen-
tal interest (k~T 27rp, ), and we can well approx-
imate this term by a constant. Note, however, that
the factor 0.07 is an N = oo result —the 1/N correc-
tions to this factor have not been computed. Further,
the correlation length behaves in the RC regime as ( =
0.24 (47rp, /k~T) exp[4n p, /k~T] where 47rp, 1.08J,
and deep in the QC region as ( = 0.51Ja/k~T.

Consider now the numerical results for y„. The data
of recent series expansion studies [15]show that y„obeys
a Curie-Weiss law at high T, passes through a maximum

at T = 0.4J, and then falls down. The region below

the maximum is quite small; nevertheless, we fitted this
data by a straight line and found 0.13+0.03 for the slope
and about 0.06 for the intercept —both results in better
agreement with our QC expression than the RC result.
Finally, at very low T, we expect a crossover to the RC
regime, and the corresponding value of y„at T = 0 is
also consistent with the data. We also compared the
data for the correlation length and S(0) at k~T 0.4J
and found rough consistency with our expressions in the
crossover region between QC and RC regimes. Note that
our interpretation of the numerical data is difFerent from
that in Ref. [15].

To conclude, we have presented a theory of the critical
properties of noncollinear quantum antiferromagnets in

two dimensions. Our key assumption was on the valid-

ity of a continuum description in SU(2) variables, which

suppressed vortex excitations. However, we were then
able to show that our results were consistent with earlier
large N [6] and D = 2+e [5] studies. The quantum disor-

dering transition was described by an anisotropic sigma
model for spin-z, bosonic spinon fields. All physical ob-
servables involve a collective mode of two spinons, and
we computed explicit scaling forms for a variety of ex-

perimentally measurable quantities. Our results for y„
in the QC region are consistent with recent numerical

data on the spin-z triangular antiferromagnet [15]; this
may be viewed as some indirect evidence for the pres-
ence of deconfined spinons. However, numerical results
also seem to indicate that the T range where QC be-
havior may be observed is rather narrow for this system.
More detailed studies, especially in quantum-disordered
noneollinear magnets, will be quite useful.
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