
VOLUME 72, NUMBER 13 PHYSICAL REVIEW LETTERS

Hund's Rule Theory for Heavy Fermion Superconductors

M. R. Norman

28 MARCH 1994

Materials Science Division, Argonne National Laboratory, Argonne, IIlinois 60439
(Received 13 May 1993; revised manuscript received 20 July 1993)

In this paper, a multiorbital generalization of standard spin fluctuation theory is considered within an
on-site approximation. For f electrons, this theory leads to an instability for a superconducting pair state
which obeys Hund's rules, with L =5, S=1, and J=4. The degeneracy of this state is broken by crystal-
line effects, and realistic calculations for UPti find a pair state with 16 (E2,) symmetry, consistent with

current experimental constraints.

PACS numbers: 74.20.Mn, 74.70.Tx

From the beginning of theoretical work on heavy fer-
mion superconductors, it has been realized that there are
strong connections between these metals and superfluid

He [1]. This has led many theorists to apply standard
spin fluctuation theories which were developed for He to
the heavy fermion problem. So far, the results have been
mixed. On the plus side, such theories give non-s-wave

pairing states, and the evidence in most cases is that the
heavy fermion superconductors are non-s-wave. On the
minus side, the actual group representation these theories
predict for UPt3, the best studied of the heavy fermion
superconductors, has so far not matched what the experi-
mental data seem to indicate. Available data point to the
pair state having I6 (E2„) symmetry [2]. This state is

an odd parity two-dimensional group representation with

line and point nodes, and invariably is suppressed in the
spin fluctuation calculations [3]. There are further quali-
tative problems with these theories. First, six of the seven
known heavy fermion superconductors are uranium al-
loys. Second, all of the superconductors either have two
formula units per cell [4], or have a magnetic-structural
phase transition at a temperature above T, so that there
are two formula units per cell. Third, the magnetic sus-
ceptibilities of the two heavy fermion superconductors
UPt3 and UPd2A13 look almost identical to that of PrNi5,
a localized fz system. Moreover, the magnetic suscepti-
bility observed in URuzSi2 can be easily explained by an

f configuration [5]. The above facts suggest that some
on-site interaction is playing a fundamental role in heavy
fermion superconductivity, since such an interaction
could (1) differentiate between Ce and U ions, (2) de-
pend on having two formula units per cell due to having
in phase or out of phase relations between the order pa-
rameters on the two sites [4], and (3) prefer an f
configuration. Standard antiferromagnetic spin fluctua-
tion models, based as they are on having an attractive in-
teraction between near neighbor sites, do not directly ad-
dress these points.

An on-site model can be motivated by looking at the
problem at the bare interaction level. The potential of
two f electrons on a uranium site looks very similar to the
bare interaction potential for He. In particular, the po-
tential is strongly repulsive at short distances due to the
direct Coulomb interaction of the two f electrons, is at-

tractive at intermediate distances (of order 3 a.u. ) due to
the Coulomb interaction of the f electrons with the urani-
um ion core, and decays to zero at large distances due to
the exponential decay of the f electron wave function.
The ground state of this potential is well known to have a
symmetry of H4 (S 1, L =5, J=4) as this state mini-

rnizes the Coulomb repulsion. This represents a qualita-
tive difl'erence from 3He, since although a pair of He
atoms has S 1 also, there is no orbital dependence on

the bare interaction and L is determined by the Landau
parameters which are difficult to calculate. In the f
case, though, the orbital dependence of the interaction
fixes L, with J being fixed by the strong spin-orbit cou-

pling.
To understand this problem further, we review the en-

ergy levels of an f ion. These energies are best ex-
pressed in an LS coupling scheme. Every configuration
has an energy Eo, equivalent to the Coulomb repulsion U
(Eo is equal to the L 0 Coulomb multipole integral Fo
plus a combination of F, F, and F terms). The split-
ting between singlet and triplet spin states is determined

by the energy E~ (a combination of F, F, and F
terms), with the three triplets having a coefficient of 0
and three of the four singlets having a coefficient of 2
(the singlet 'So is the highest energy state with a
coefficient of 9). This is similar to the paramagnon mod-
el for He where these coefficients are the same (0 for
triplet, 2 for singlet), but with the important difference
that the splitting in the f electron case is not determined
by the F (charge fluctuation) term as in the single orbit-
al Hubbard model used for He but by the L )0 (shape
fluctuation) terms (in phenomenological paramagnon
models [6] this interaction is denoted as I). Moreover,
the degeneracy of the three triplets is lifted by an orbital
splitting term, E3, which is another combination of L )0
terms. The lowest energy state is H with an energy
Eo —9E3 with the next highest state being F with an en-

ergy Eo. The energy Eo determines the normal state Fer-
mi energy for uranium systems since two f electrons are
occupied per site (the effect of E3 cannot be represented
at the single particle level and is assumed to not enter
into determining the quasiparticle Fermi energy, al-
though this assumption could be debated). Since super-
conductivity is an instability of the Fermi surface, Eo is
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the zero of energy, analogous to the He problem, where
the energy of the triplet is the zero of energy. Unlike the
3He paramagnon problem, the H state has an energy
lower than the energy zero; i.e., the interaction is already
attractive at the bare interaction level. This is only true
for a uranium (f ) ion; for a cerium ion, the zero of ener-

gy is set by the Fermi energy of the f ' configuration, and
thus the bare interaction includes Ep (the energy of f
above f ') and is repulsive for all f states. Despite the
bare attraction for the uranium case (which might be an
artifact of the assumed energy zero), one would not
necessarily expect this to give a proper description of the
physics. Use of the direct interaction potential for He
gave an incorrect pair state (L=2) (at the bare level of
the paramagnon model, no attraction at all). It was

necessary in that case to derive an induced interaction by
summing bubble and ladder diagrams to obtain the prop-
er physics. This leads to the vertex equation

I-abed f-gbcd f aecf+rff. fbed
0 gr

where I 0 is the antisymmetrized Coulomb interaction
(linear combination of the E; terms) and the indices label
orbitals. For the purposes of this paper, the susceptibility
bubble, pi[, is treated as a number, gp [7]. Solving this

equation for the s electron case leads to the standard
paramagnon results [8]. The f electron case is more

complicated due to the presence of four interaction pa-
rameters (Ep, Ei,E2,E3) and fourteen orbitals. If only

the E0 term is kept, the equation can be analytically
solved. The result is Ep/(I —E gp)p(I+13E 2p)p+Ehp/
(I —Epgp). This has some important implications, in that
the effective repulsion is reduced compared to the bare Ep
as long as gp is not too close to being equal to I/Ep (the
divergence for gp 1/Ep is a localization instability). If
only the E~ term is kept, the equation can also be solved.

For the triplet states, one obtains —I I E i gp/(1
—81Eigp)(1 —4Eigp)+2Eigp/(I —4Eigp), which has

similarities to the single orbital case in that there is an in-

duced attraction for the triplet states. There is a diver-

gence for 9Eigp= I (a magnetic instability equivalent to

Igp 1 in the simple paramagnon model). For the 'I
state, the induced interaction is (4E i + 13E i Xp

—
126E imp

—162E i gp )/( I —81E i gp ) (1 4E i2g$) —2E i,—which is

again similar to the single orbital case in that there is an

enhanced repulsion for singlet states. An analytic expres-
sion for the general case has not been obtained due to the
complicated orbital sums. Instead, one can reduce the
vertex equation to a series of matrix equations which can
be diagonalized on a computer. This has been done for
the H, F, P, and 'I states [9].

The results are summarized in Fig. 1, where the vari-

ous effective interactions are plotted versus g0. The
values of E; were obtained from Goldschmidt [10) (these
values give an F of 1.S3 eV, consistent with spectroscop-
ic data in heavy fermion uranium compounds). As one

can see, the triplets become increasingly attractive and
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the singlet increasingly repulsive as g0 increases with a
divergence for (Ep+9Ei)gp = I. gp is difficult to estimate
since spin-orbit and anisotropy effects play a major role
[7]. For illustrative purposes, we assume a "Stoner" re-
normalization of 4 as seen in He. For this value of g0
(0.137), the H energy is —2.3 eV relative to the f zero
of energy.

One can estimate the effective pairing matrix element

by realizing that the quasiparticle renormalization in the
heavy fermion case is mostly frequency dependent in na-
ture [I ll. This would renormalize the induced interac-
tion discussed above by a factor of Z since each of the
four external lines in the vertex is renormalized by Z'~

(only Z of the bare f electron is in the quasiparticle
pole). Z ' is equal to the mass renormalization factor,
known from de Haas-van Alphen measurements to be
about 16 in UPt3 [12]. This renormalizes the H matrix
element of 2.3 eV to about 100 K. This value will be fur-
ther reduced when projecting onto pair states at the Fer-
mi energy which have the symmetry of a particular group
representation. Belo~, this projection factor is sho~n to
be about 8, so the final value is 12.5 K. Since the renor-

malized (quasiparticle) Fermi energy, EF, is about 60 K

in UPt3 (specific heat y, neutron scattering linewidth),
the pairing coupling constant, AV4Z, is about 0.21

(where N is the renormalized density of states and V4 is

the interaction potential in the H4 channel). With a
cutoff of order FF, this gives a BCS estimate for T, of 0.6
K. The agreement with experiment is somewhat fortui-
tous, of course, but the point is that the effective coupling
constant is at least of the right order of magnitude.

One might wonder why such a large interaction of or-
der eV would not lead to a high T, for more itinerant sys-
tems with Z closer to 1. The reason is that the effective
interaction parameters used here are only appropriate for
nearly localized f systems. The E; parameters have

been extracted from fits to spectroscopy data on the

FIG. l. Effective interaction (eV) for H, 'F, 'P, and 'I
versus Zp for parameters appropriate to a U ion [l0] (Ep l 225
meV, Ei =470.3 meV, E2 1.923 meV, Ei 43.28 meV). The
zeros of energy for the f' and f cases are marked by the
dashed lines.
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TABLE I. Hexagonal basis functions for J=4. The forms
listed in this table should be (a) antisymmetrized (lp&lv)—

lv&lp&) and (b) symmetrized (+ representation) or antisym-
metrized ( — representation) with respect to site before use.
For I q, a and P are variational coefficients such that the sum of
their squares is equal to l, and this representation occurs twice
(a, p and p, —a). Note that I 5 and 16 are doublets obtained
by replacing lp& by I

—p).
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r,
1]
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uranium atom. On average, they are 62% of their
Hartree-Fock values due to configuration interaction
effects. In UPt3, the excitation from the H4 ground
state to the F2 state has been seen by high energy neu-
tron scattering [13] and has an energy of 0.373 eV. This
is 72% of the atomic value indicating a further reduction
of the E; due to solid state screening effects. In normal
transition metals, these parameters are much more
strongly screened and lead to a low estimate of T, for
triplet superconductivity in palladium [14]. As for ceri-
um alloys, the interaction is repulsive at the bare interac-
tion level due to the Coulomb repulsion (Eo) of f rela-
tive to f ' (the value of which is about 3 times larger than
in uranium). At the induced interaction level, the insta-
bility happens at a smaller value of go due to the larger
Eo term, yet the large Eo causes the interaction to remain
repulsive until very close to the instability. It is well
known that strong coupling effects act to turn off the su-
perconductivity before the instability is reached since the
energy scale of the paramagnon is going to zero [15]. For
this reason, although pairing is possible in the cerium
case, it is less likely.

The actual symmetry of the gap is found by construct-
ing the quasiparticle pair state lk, —k) using relativistic
band structure wave functions and projecting this onto
J =4. The degeneracy of the J 4 state is broken due to
lattice effects which should be well described by the
momentum dependence of the band structure wave func-
tions (although these wave functions fail to describe the
frequency dependence of the quasiparticle states, they
give a Fermi surface shape in good agreement with exper-
imental data, indicating that their momentum depen-
dence is reliable). For hexagonal UPt3, the 18-fold de-
generacy of J=4 in the isotropic case (2J+1 times the
number of f sites in the unit cell, which is two) will be
broken into three singlets (I i, I 3, and I 4) and three dou-
blets (two I s, one I 6), with each occurring twice [+
(even parity) representations have the order parameter in

phase on both sites, and —(odd) have it out of phase].
In Table I, these states are given in terms of pairs of sin-
gle particle j= —', f states. The group transformation

where P represents the projection with Ap" being the
coefficient of the expansion of lk, —k& which has J=4
with the symmetry of the group representation I and
basis v (for a two-dimensional representation), and j is
the index of the d vector (0 for even, x,y, z for odd).
Since the matrix element is separable in k and k', it is
trivial to write down the appropriate BCS coupling con-
stant

x =ivv, z'g(IA J "~l') (3)

where lV is the density of states, ()I, is an average over a
narrow energy shell about the Fermi energy, and j runs
over 0 for the even parity case and x,y, z for the odd pari-
ty case.

The j= —', part of the band structure wave functions
can be written as Ik) ga„"; lp); where p runs from —

z

to —, , i is the site index (1,2), and n is the band index
(band calculations predict that five f bands contribute to
the Fermi surface of UPt3, such a surface is in good
agreement with de Haas-van Alphen data [12]). Thus,
the A coefficients can be written as ga„";a„"; with k
denoting either k or PTk and —k denoting Pk or Tk,
with the appropriate linear combinations being those
which match the basis states in Table I and have the
correct parity form (do for even and d„dz, d, for odd).
The average in Eq. (2) was done by constructing a regu-
lar grid of 561 k points in the irreducible wedge (1/24) of
the Brillouin zone and keeping those nk states which are
within 1 mRy of the Fermi energy (182 nk points for
UPt3).

In Table II, the results of this calculation are given.
The odd parity states have larger coupling constants since
there are three terms contributing instead of the one term
for the even parity case. This is of interest since the odd
parity states only exist because of the presence of two f
atoms in the primitive cell, which, as mentioned in the in-
troduction, all heavy fermion superconductors have. The
largest coupling constant occurs for a state of I 6 symme-
try. This state is an odd parity two-dimensional group
representation. It has point nodes along the e axis and a
line of nodes in the k, =n/c zone face. It is interesting to
note that although only the d, component of the gap

properties of these states are listed by Appel and Hertel
[16].

For each k point, there are four degenerate states
available to construct lk, —k& from [17]. The singlet
(even parity) combination is (lk, Tk) —IPTk, Pk))/2 (de-
noted do) and the triplet (odd parity) combinations are
lk, Pk) ( —d, +id~), IPTk, Tk) (d„+id~), and (lk, Tk)
+IPTk, Pk))/2 (d, ), where P is the parity operator and
T the time reversal one. The odd parity combinations
define a "d" vector which lives in a pseudospin space.

The resulting pairing matrix element for this model is
then

(k', k'IH—,rrlk, k&p =—(V Z')Ai,* "'AJ"',



VoLUME 72, NUMBER 13 PHYSICAL REVIEW LETTERS

r&

r5
I3
r4
I6
r[

Even (+)
0.139
0.059
0.048
0.027
0.036
0.153

Odd ( —)

0.148
0.203
0.129
0.242
0.253
0.229

TABLE II. Coupling constants for J 4 for UPt3. These are
normalized to the coupling constant for the J=O, I ~+ state and
should be multiplied by this quantity (0.495, which is the
square of the ratio of the j 2 f to the total density of states)
and the quantity NV~ to convert to real coupling constants.

with a reasonable estimate for T, . The theory also ex-
plains the preference for heavy fermion superconductors
to be uranium alloys, and also the role that the crystal
structure (two formula units per unit cell) plays in the
pairing.
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function vanishes on the k, =0 zone face as expected
based on group theory arguments [18], all three d vector
components vanish on the k, =ale zone face, proving a
counterexample to the argument in those papers that a
line node gap function is not possible for odd parity
states. Although the actual form of the gap function in

the current case is extremely complicated since the a„"~

are strong functions of momentum, this state (I) is from
a two-dimensional group representation and can thus ex-
plain the unusual phase diagram seen for UPt3, (2) has
the correct nodal structure to explain various thermo-
dynamic data of UPt3, and (3) is an odd parity state with

the largest possible moment projection onto the basal
plane for a two-dimensional group representation (MJ- ~ I ), which is necessary to explain the observed direc-
tional anisotropy of the upper critical field [19]. It should
be remarked, though, that the states I i and I 4 have

coupling constants close to that of I 6 and the ordering of
the coupling constants will thus be sensitive to the cutoff
of the energy shell used in the averaging in Eq. (2). The
values tabulated in Table II should be multiplied by the
quantity WV4Z to convert to an actual coupling con-
stant, and, as discussed above, the resulting coupling con-
stant for I 6 is of the right order to explain the observed
value of T,. Similar calculations have also been done for
J 2 (3F) and J 0 (3P). For J=2, the largest coupling
constant also has I 6 symmetry (its value modulo V2 is

0.85 of the J 4 one). For J 0, the largest coupling
constant has I t+ symmetry. Its value modulo VD is a fac-
tor of 4 larger than J 4, so it is reassuring to find a
repulsive Vii over a wide range of Fig. 1 (in the JJ cou-

pling scheme, V2 and Vii are repulsive [9]).
In conc)usion, an orbital degenerate generalization of

the He paramagnon model has been applied to f elec-
trons and yields a superconducting pair state which
satisfies Hund's rules (L 5, S I, J 4). The degenera-
cy of this state is lifted by crystalline eAects. Realistic
calculations for the case of UPt3 give a pair state with
I 6 symmetry which is consistent with experimental data
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