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Hall Dynamics of the Kelvin-Helmholtz Instability
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The nonlinear evolution of the Kelvin-Helrnholtz instability in an inhomogeneous plasma is studied us-
ing a two-dimensional magnetobydrodynamic (MHD) simulation code which includes the Hall term.
This term is important when the thickness of the boundary layer is less than an ion inertial length. In
comparison to the evolution of the instability based upon ideal MHD, the Hall term generates short
wavelength turbulence which inhibits vortex formation, and introduces an asymmetry into the nonlinear
evolution of the instability depending upon the sign of the vorticity.

PACS numbers: 52.35.Py, 52.65.+z, 96.35.Kx

The Kelvin-Helmholtz instability has received consid-
erable attention as a mechanism to provide viscous cou-
pling and transport across boundary layers in space and
laboratory plasmas. Observational evidence indicates
that these boundary layers can be quite narrow, with
L & c/ro~; where L is the thickness of the boundary layer
and c/co~; is the ion inertial length radius [1-5]. Most
theoretical work on the subject of thin boundary layers
has used kinetic (Vlasov) theory [6], while numerical
studies have used hybrid [7-9] or particle [10] codes be-
cause standard magnetohydrodynamic (MHD) theory of
the instability [11,12] breaks down. However, the validi-

ty of MHD theory can be extended to the regime
L &e/ro~; by including the Hall term [13]. Recently,
linear theories of the Kelvin-Helmholtz instability have
been developed based upon Hall MHD theory [14,15].
One interesting feature of this work is that the Hall term
introduces an asymmetry: the linear growth rate is a
function of the sign of the vorticity. In addition, Opp and
Hassam [14] find a new branch of the instability in the
short wavelength regime (kL ) 1). In this Letter, the
first 2D Hall MHD simulation results in the nonlinear
evolution of the Kelvin-Helmholtz instability are present-
ed.

The 2D Hall MHD equations used in the analysis are
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where P =nT, T T, + T;, and B=B(x,y)e, . The
second term on the right-hand side of (3) is the Hall
term. Equations (l)-(3), coupled with an equation of
state, form a complete set of one-quid equations describ-
ing the ion density and velocity, and the magnetic field.
An isothermal equation of state (i.e., P=nT) is con-
sidered, and T, )& T; is assumed so that finite ion Larmor
radius eAects can be neglected.

Linear analysis of (l)-(3) yields a dispersion relation
[16]
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where V~ (Bz/4rrnm;)'~2, re, 4rrne /m;, L„(rilnn/
By) ', P 2C, /y, V~, and C, y, T/m;. The Hall term
leads to a new drift mode in the limit L„&(c/roiw)
x (1+p/2) '~ . For L„&&(c/ro~; )(1+p/2) ' the
dispersion relation is ro=k, V~(c/ro~;)/L„and the wave

propagates in the BxVn direction.

The 2D Hall MHD code used in the analysis is based
upon a finite volume method utilizing a variation of the
beam scheme [17,18]. Equations (1)-(3) are solved in

conservative form using a total variation decreasing
scheme [19]. A nonlinear switch between an eighth-order
spatial scheme and a low-order scheme based upon the
partial donor cell method [20] is used. The temporal
scheme is accurate to second order. The code has suc-
cessfully modeled the nonlinear evolution of the unmag-
netized ion Rayleigh-Taylor instability [21], sub-Alfvenic
plasma expansions [22], and high-frequency magnetic
drift waves [16]; all of these phenomena depend criti-
cally upon the Hall term. Simulations of the Kelvin-
Helmholtz instability based upon ideal and Hall MHD
were performed to benchmark the code. For example,
from Fig. 7 of Fujimoto and Terasawa [15] one finds that
yL/V~=0. 08 for k„L 0.4; a simulation using these pa-
rameters yields a growth rate yL/V~ =0.08 in agreement
with theory. Opp and Hassam [14] obtained analytical
results based upon idealized plasma and field profiles.
Simulations were performed using parameters specified in

Fig. 4 of their paper. The theoretical growth rate is
y=0.21Vo/L for kL =0.52; the growth rate obtained nu-

merically is y=0. 18Vo/L. The slightly lower numerical
growth rate is attributed to approximate plasma and field

profiles.
The simulations consider the plasma and field dynam-

ics transverse to the ambient magnetic field. The plasma
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FIG. l. Grey-scale contour plots of the den-
sity are sho~n at times 0;,t 1.76, 6.16, l0.6,
and 15.0 (i.e., i=2, 7, l2, and l7 sec) for
three cases: (a) ideal MHD with positive vor-
ticity, (b) Hall MHD with positive vorticity,
and (c) Hall MHD with negative vorticity.

(c)

and field configurations used in the simulations are the
following. The initial density, magnetic field, and veloci-

ty profiles are n(y ) =(no/2) [I +hn —(1 —An)tanh(y/
L„)],V(J) = Vptanh(y/L»)e, and 8(y) satisfies pressure
balance (i.e., 8+8 /go=const). The parameters used
are no 10cm, d, n 10, 8(y y, ) 1 nT (y, is the po-
sition of the top boundary), C, =3.0X106 cm/sec, Vo
= —6.8X10 cm/sec, and L» =5X10 cm. The simula-
tion box extends from x 0 to 1.2&10 cm in the x direc-
tion, and from —2. 1&10 to 2. 1X10 cm in the y direc-
tion. The mesh size is (x,y) =(80, 100); the mesh is uni-

form in the x direction so that hx=1.5x10 crn, but is

stretched in the y direction. The grid in the y direction is

uniform between —3 x 10 and 3 x 10 cm for 60 cells so

that hy =10 cm; the remaining cells in the y direction
are stretched. The boundary conditions are periodic in

the x direction and are zero gradient (i.e., B/By =0) in

the y direction. The simulations are initialized with a 2%
random perturbation in the fiuid variables.

The parameters can be normalized to the density and
magnetic field values at the center of the boundary layer,
denoted by the subscript c (i.e., n, =55 cm and 8,
=9.22 nT at y =0). The physical parameters at y =0
are c/ro~;, =3.1&10 cm, 0;, =0.88 rad/sec, P, =1.2, and
V&„=2.7X10 cm/sec. The key dimensionless parame-
ters are L/(c/at~;, ) 0.16 and Vp/Vg =2.52. The phase
velocity of the drift mode described by (4) is a maximum
at y= —6&&10 cm with a value Vzq=5. 6x 10 cm/sec

MAGNETIC FIELD

FIG. 2. Grey-scale contour plots of the
magnetic Geld. The parameters and conditions
are the same as in Fig. l .
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(» V~ and Vo). The dimensionless parameters are simi-
lar to those used by Thomas and Winske [8] in their
study of the Venus ionopause, but in this Letter a nar-
rower boundary layer is assumed initially, as well as cold
ions.

The results of the simulation study of the Kelvin-
Helmholtz instability are shown in Figs. I and 2. Grey-
scale contour plots of the density (Fig. 1) and magnetic
field (Fig. 2) are shown at times 0;,r =1.8, 6.2, 10.6, and
15.0 for three cases: (a) ideal MHD with positive vortici-

ty (VxV&0), (b) Hall MHD with positive vorticity
(VxV &0), and (c) Hall MHD with negative vorticity
(VxV(0). These times correspond to t=2, 7, 12, and
17 sec. The size of each region shown is x =0 to 2.4x10
cm (the actual simulation region is half this size) and
y= —10 to 10 cm (the actual simulation region is

roughly twice this size); this corresponds to x/(c/rot;, )
=0 to 7.7 and y/(e/re, ,) = —3.2 to 3.2. The total mass,
magnetic flux, and vorticity are conserved to within a fac-
tor -5x10 during the simulations. In Fig. 1 the most
intense white region corresponds to a density n & 150
cm and the darkest grey region to a density n-10
cm . In Fig. 2 the most intense white region corre-
sponds to a magnetic field 8 & 15 n T and the darkest
grey region to a magnetic field B-1 nT.

The ideal M H D case is dominated by a single wave

mode with a wavelength in A, » =1.2x10 cm (k„L
=0.26), and a linear growth rate y =0.49 sec
(=0.04Vo/L); this result is consistent with linear theory
(see Fig. 3 of Miura and Pritchett [23]). The largest
density perturbations extend into the high density region

(y &0), and the largest magnetic field perturbations ex-
tend into the high field region (y (0). The maximum
velocity in the y direction occurs for t ) 15 sec and is

i V~i=4.0&10s cm/sec~ Vo, this corresponds to vortex
formation and the plasma "rolling up.

" Simulations were
performed for the negative vorticity ideal MHD case; the
results are the "mirror image" of the positive vorticity
ideal MHD case.

The Hall MHD simulations are also dominated by a
single wave mode. The linear growth rate for both Hall
cases is roughly y-0.04Vo/L, which is the same as the
ideal MHD case; this is in agreement with the linear
theory of Fujimoto and Terasawa [15] who report little
affect of Hall dynamics on the linear growth rate of the
Kelvin-Helmholtz instability for kL ~ 0.4. However, the
Hall MHD cases develop enhanced levels of small-scale
turbulence (kL ) 1); this result is also consistent with ex-
pectations from linear theory [14]. The small-scale tur-
bulence saturates at low amplitudes and eventually the
longest wavelength mode dominates in the evolution of
the instability. Furthermore, the maximum velocity in
the y direction is i V~) =2.0& 10 cm/sec for the negative
vorticity case, and i V~ i =1.4x10 cm/sec for the positive
vorticity case; these velocities are smaller than those for
the ideal MHD case. Thus, the Hall term acts to inhibit
vortex formation, as well as to relax sharp density and

magnetic field structures as sho~n in Figs. I and 2.
There is also a marked difference in the evolution of the
density and magnetic field fluctuations in Hall MHD for
positive and negative vorticity. The positive and negative
vorticity cases are not mirror images of one another, as is
the case for ideal MHD. The asymmetry is caused by the
magnetic drift mode [16,24] which propagates in the
BxVn direction. The asymmetry can develop because
V Vz& changes sign throughout the boundary layer for
different signs of the vorticity.

The average density and magnetic field profiles in the

y direction at times 0;,t 0 and 17.6 (t=0 and 20 sec)
are shown in Fig. 3. The average profile is defined as
(n(y), B(y)) =f[n(x,y), B(x,y)]dx/fdx and the limits
of integration extend from x=0 to 1.2&10 cm, the size
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FIG. 3. Average profiles of (a) density and (b) magnetic
field at times rt;, r =0 and I5.0 (i.e. , t =0 and 20 sec) for the
three cases studied (see Fig. I). Here, PV denotes positive vor-

ticity and NV negative vorticity.
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of the simulation box. The positive vorticity Hall MHD
case leads to the most rapid broadening of the boundary
layer; the density boundary layer thickness grows from
L-5 km to L —140 km. This is in contrast to the ideal
M H D and negative vorticity Hall M H D case in which
the density boundary layer thickness grows from L-5
km to L -90 km. The magnetic field boundary layer also
increases its width in all cases. The most significant
difference between the ideal MHD case and the Hall
MHD cases is the enhanced diffusion of the magnetic
field into the high density, low magnetic field region (i.e.,

y )0) for the Hall MHD cases. This is caused by mag-
netic field transport via magnetic drift waves associated
with the density irregularities in the region y )0 [16,24].

Thus, the nonlinear evolution of the Kelvin-Helmholtz
instability in narrow boundary layers (L (c/to~;) is

dramatically altered by the Hall term. Short wavelength
turbulence is generated (kL ) 1) which inhibits vortex
formation, and there is an asymmetry associated with the
direction of the vorticity. This suggests that boundary
layer turbulence associated with a magnetized plasma
[]owing past an unmagnetized body (such as Venus or a
cometary ionopause) or a magnetized body (e.g. , the
Earth's magnetopause) may be asymmetric in the east-
west direction (where the interplanetary magnetic field is

in the north-south direction). Interestingly, hybrid simu-
lations of a "cometlike" obstacle in the solar wind observe
such an anisotropy [25]. There are also potential applica-
tions to laboratory plasmas. For example, the laser-
target experiments of sub-Alfvenic plasma expansions [5]
are dominated by Hall MHD physics, especially in the
early time structuring of the plasma and field. Following
the formation of "plasma jets," secondary structures
formed on the sides of the jets which may be due to the
Kelvin-Helmholtz instability.

Finally, several other points are worth noting. First,
finite Larmor radius effects, associated with an anisotrop-
ic ion stress tensor [26], are expected to be important in

the regime l -p;. As a point of reference, p;-c/to~; for
P;=1. This effect has a stabilizing infiuence on the
Kelvin-Helmholtz instability [27]. The code is being up-

graded to incorporate this effect. Second, the assumption
of an isothermal plasma can break down; simulations us-

ing an adiabatic equation of state will be reported else-
where. And third, the plasma and field configuration
should be extended to allow for dynamics parallel to the
ambient magnetic field; for this situation the Hall term
leads to whistler waves [13].
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