
VOLUME 72, NUMBER 2 PHYSICAL REVI EW LETTERS

Snbrecoil Laser Cooling and Levy Flights

10 JANUARY 1994

F. Bardou, ' J. P. Bouchaud, 0. Emile, '* A. Aspect, 't and C. Cohen-Tannoudji'
College de France et Laboratoire de Spectroscopic Hertzienne de l'Ecole Normale Superieure, 24 rue Lhomond,

F-75231 Paris Cedex 05, France
TCM Group, Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, United Kingdom

and Senice de Physique de l'Etat Condense, Commissariat a l'Energie Atomique de Saclay, Orme des Merisiers,
9I I 9I Gif sur Y-rett-e Cedex, France

(Received 30 July 1993)

Anomalous diA'usion processes, dominated by rare events, are shown to exist and to play a central role
in certain subrecoil laser cooling schemes. We present a new statistical analysis of these processes, in

terms of Levy Rights, which provides a precise analytical description of the cooled atoms in the long time
limit, where the standard methods of quantum optics are inappropriate. These analytical predictions are
quantitatively checked by comparison with the results of quantum Monte Carlo simulations of the cool-
ing process at intermediate times.
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Laser cooling [1] provides interesting examples of ran-
dom walks. The atomic momentum p changes in a ran-
dom way, as a result of coherent absorptions and stimu-
lated emissions of laser photons between a ground state
manifold (g) and an excited one (e), interrupted at ran-
dom times by spontaneous emission of fluorescence pho-
tons. In usual cooling schemes, the exchanges of momen-
tum between atoms and laser photons give rise to a net
drift of the atomic momenta towards p 0. Competing
with such a friction mechanism, there is also a rnomen-
tum diffusion due to the randomness introduced by spon-
taneous emission, leading to a random walk in momen-
tum space, as in Brownian motion. The random recoil
Alt, due to fluorescence photons also gives rise to an im-

portant landmark in the temperature scale, the recoil
temperature Ttt, given by ktt Ttt/2 =Ett = II1 k /2M.

Up to now, two subrecoil cooling schemes have been
demonstrated [2,3]. We will focus here on the first one
[2], based on velocity selective coherent population trap-
ping (VSCPT). Some of the ideas developed here could
possibly be extended to the other scheme and to other
proposals [4]. In VSCPT, there is no friction mechanism,
but a combination of two effects. First, there are quan-
tum interference effects which prevent atoms from ab-
sorbing light if they are in certain linear superpositions of
ground state sublevels (dark states) and if they have a
very small momentum p=0. Second, for atoms with

p&0, which scatter photons in random directions, there is
a momentum diffusion in p space which allows some
atoms to be transferred from the p&0 absorbing states
into the p=0 dark states where they remain trapped for
a long time, and where they pile up. An important ques-
tion then arises concerning the ultimate efficiency of such
a cooling process. Using simple arguments, we have ar-
gued [2] that the width of the momentum distribution has
no lower limit and should decrease as 8 ', when the
laser-atom interaction time 8 is increased. However, up
to now, no quantitative prediction concerning the propor-
tion of cooled atoms and the exact shape of the mornen-

turn distribution was available [5]. This is not surprising
in view of the complexity of the full quantum optical
Bloch equations (both internal and external degrees of
freedom must be treated quantum mechanically at these
subrecoil temperatures). Furthermore, in the problem
studied here, where no steady state exists, it seems quite
difficult to extract the asymptotic behavior from a numer-
ical solution of optical Bloch equations.

In order to improve our understanding of VSCPT, we

have performed quantum Monte Carlo simulations [6],
using the "delay function" [7]. It clearly appears (see
Fig. I) that the smaller the atomic momentum p, the
longer the delay rg between two successive spontaneous
emissions, which is the principle of VSCPT. There is

another striking feature of Fig. 1 which is the starting
point of the analysis presented here: The random se-
quence of time intervals rg is clearly dominated by a sin-
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FIG. 1. Monte Carlo simulation of VSCPT. Each vertical
discontinuity corresponds to a spontaneous emission jump dur-
ing which the atomic momentum p changes abruptly. The de-
lay between two successive jumps can become very long if p gets
close to zero. The longest time interval (out of 4000) takes
about 70% of the total time. The inset shows a zoomed part of
the sequence.
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FIG. 2. Variations with p of the fluorescence rate RF(p) (see
text). The narrow dip around p 0, with a width p~, is due io
VSCPT. The trapping zone is defined by [pi (pt„~. Three
difl'erent models are taken for the variations of RF(p) at large
p. Model I: walls confining the atomic momentum io ip(~p~, . Model II: constant Auorescence rate equal to I ' out of
the dip (interrupted line). Model III (corresponding io actual
experiments, full line): decrease of the fluorescence rate for

ip) & p„due to a Doppler detuning from the optical resonance.

gle term, the longest one, which is on the order of the to-
tal observation time. This uncommon domination of a
random sequence by rare events is a signature of "Levy
flights" and "broad" distributions [8,9]—in sharp con-
trast with the usual Brownian motion statistics encoun-
tered in other cooling schemes. This feature has led us

to develop a completely new quantitative analysis of
VSCPT, based purely on statistical arguments. The ad-
vantage of such an approach is to provide explicit analyti-
cal results for the cooling efficiency at long interaction
times.

The basic ingredient of our statistical analysis is the
dependence, with the atomic momentum p, of the fluores-
cence rate RF(p) from dark states (curve in solid line of
Fig. 2). The dip around p 0 and the null value of
RF(p) for p 0 show that these states become darker and
darker when p 0 [RF(p) ~p when p 0]. When ipse

increases, RF(p) reaches a value I '
equal to the absorp-

tion rate from g in the absence of quantum interference.
Finally, when ipse )p„ the Doppler shift is so large that
the lasers get out of resonance with the atomic transition,
and RF(p) decreases. The widths pg and p, of the nar-
row and broad structures of Fig. 2 are such that
kpg/M-I '

and kp, /M I /2, where I is the spontaneous
emission rate from e. Although this is not essential, we

suppose here that the laser intensities are low enough, so
that I'« I, or equivalently pg «p, .

It is now convenient to define in the neighborhood of
p 0 a narrow trapping zone ipse

~ pi,» (we choose

P«»( hk, pg), where atoms can remain trapped [10] for
a very long time z(p) on the order of 1/RF(p) ~p
The temporal evolution of the atom then appears as a se-

quence of trapping periods where ipse
(pi p with dura-

tions zi, z2, . . . , alternating with diffusion periods, with

durations zi, iq, . . . , where the atom, with ipse )p«», is

diffusing out of the trap. The i s are actually "first re-

turn times" in the trap. Consider 2Ã successive alternat-
ing trapping and diffusion periods, with 1V)&1, and let

T(N) gP iz; be the total trapping time, and T(1V)
=g;-li; the total escape time. We first try to under-

stand how T(N) and T(N) grow with N. Since the z s

are independent random variables, as well as the z s, we

need only to find their probability distributions P(z) and

P(z).
In order to calculate P(z), we first introduce the prob-

ability II(p), for an atom falling in the trap, to reach it

with a momentum p. Since we have chosen pt„~( 1'ik,

and since the momentum change after a spontaneous
emission process is on the order of hk, II(p) is nearly
uniform and equal to Tp„,~. It is then easy to calculate
the asymptotic form (for large z) of P(z). Using z(p)
~p (since p«»(pg) and II(p)dp =P(z)dz, we find

that P(z) varies as II(p)dp/dz cep, i.e., as z 1. More
precise calculations, which will be published elsewhere

[11], give P(z) Bz 1 with 8 MJ&/Skpi, »j2zo
and zo-1/I '. Unlike usual Gaussian or even Lorentzian
distributions, P(z) decreases very slowly at large z. The
distribution of trapping times is thus a broad one, so
broad that (z) is infinite. Consequently, the standard
central limit theorem (CLT) does not apply to the sum

T(N). It must be replaced by a generalized CLT, estab-
lished by Levy and Gnedenko (see, e.g. , [9] for a concise
account), and dealing with normalized power law distri-
butions P(z), behaving at large z as Bz ('+" with

0&@(2 (here, p —,
' ). One can then show [9] that

T(N) is a "Levy sum" which, for 0 (p (1, does not

grow as 1V for large N, but rather as N'1" (here as N ),
the total sum being dominated by the largest term. More
precisely, the probability to find the rescaled variable
x =T(N)/N'11' ranging between xl and xz is given by

J",'X„(x)dx, where X„(x) is a "Levy distribution law"

(equal to the inverse Laplace transform of exp[ —[xB/
pl (p) sin(i')]s"]; see Ref. [9]).

We now switch to P(i) and we first consider possible
behaviors of RF(p) at large

ipse

simpler than the solid line

of Fig. 2. If the atomic momentum is confined to ipse

~p,„(model I), for example, by a friction mechanism

operating at large p, there exists a mean value for the
first return times z;, which is on the order of the diffusion

time from 0 to p~,„. Therefore T(N) simply varies as N.
Another model consists of taking an unconstrained
momentum diffusion, with a constant rate I ', as soon as p
is out of the dip of Fig. 2 (model Il, interrupted line of
Fig. 2). This is the case if, in the real situation, we have

very large values for p, (or I ), keeping pg (or I"') fixed.

We also take 8«8, where 8,—zo(p, /hk), so that the

atom has not yet reached the zone ipse =p, after the in-

teraction time 8. The i s then coincide with the first re-

turn times of usual Brownian motion and it is known [9]
that P(i) also decreases as Biiz '+" with, in one di-

mension, p 2 and Bii =6k/pi„&46izI ' [l l]. T(N) has

illUs tlie saliie N deperlderlce as T(1V), i.e., 1V . We flllal-
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ly come back to the more realistic complete p dependence
of RF(p), which is probed by the atom for very long in-

teraction times 8& 8, (model III, full line of Fig. 2).
P(i) is then even broader than in the previous case, be-
cause of the 1/p Doppler decrease of RF(p) at large p.
In this case, as will be shown in [11],P(z) decreases as

Biiii '+", where P= —,', Biii=/jzoi 8, 'i, P being a
number of order 1. For large N, we thus expect that
T(N) varies as N'i" =N .

From the previous results, one can now simply guess
how the cooling efficiency at large 8, or large N [12], is

influenced by the boundary conditions. With confining
walls (model I), T(N)-N2 predominates over T(N)
-N, so that atoms will spend most of their time in

the trap and will be ultimately all trapped. Without
reflecting walls, and for 8«8, (model II), T(N) and
T(N) both behave as N . The proportion of trapped
atoms will thus tend to a constant. Finally, for 8& 8,
(model III), T(N)-N4 predominates over T(N)-N,
so that atoms will spend most of their time out of the
trap.

Up to now, we have considered only ID problems.
Similar arguments can be used at higher dimensions. As-
suming that RF cx:p still holds, we have, in d dimensions,
P(z)- zgz ('+" with p =d/2; d=2 hence appears as a
marginal case, where (z) still diverges, although only log-
arithmically. For d &2, (z) is finite. On the contrary,
P(i) gets broader. In the absence of Doppler decrease at
large lpga, one finds that P(i) decays only as (z ln i)
in d 2, and is not well defined when d & 2 since a finite
fraction of the atoms will never come back to their start-
ing point. In this case, both effects act in the same direc-
tion to reduce the cooling efficiency as d is increased:
P(z) narrows, and P(i) widens. Of course, as in ID,
confining walls at large p lead to a narrow distribution
P(i), dramatically improving the cooling efficiency.

The previous analysis shows that the competition be-
tween trapping and escape processes is controlled by the
exponents p and P characterizing P(z) and P(z). More
quantitative results can be derived [11]. We just give
here the outline of the calculations. Let f be the proba-
bility to find the atom in the trap at the end of the in-

teraction time 8. We have f fgiz(8 — )gz( )dzz, where
z(8 —z) is the probability that the last entry of the atom
in the trap occurs at time 8 —z (after an arbitrary num-
ber of trapping and escape periods), and where g(z)
=f, P(z')dz' is the probability that the atom has not
left the trap after a time z One can sh. ow that, for mod-
els II and III, z(t) can be expressed in terms of the con-
volution of two Levy laws with exponents p and p. If
p =@, iz(r) is also given by a Levy law and behaves at
large t as t" '. If p &p, the broader Levy law is
predominant and z(t) behaves asymptotically as t"
+0(r (2(i —P —i))

The following results can then be derived for f. For
model I (confining walls), f tends to I at large 8. For

model II [no Doppler decrease for RF (p)], f tends

asymptotically towards a constant value fo =B/(B+ Bii),
or equivalently fo = [I +a(Eit/AI ')l ' where a =16/
izJ3 [5]. Finally, for model III [Doppler decrease for

RF (p)], and for 8 & 8„we have f ' =A(8/8, ) 'i

+K(8), where K(8) is a slowly (logarithmically) varying
function of 8. Exact expressions for the prefactor A and
for K(8) will be given in [11].

We have compared our predictions at 1D for the pro-
portion f of cooled atoms with the results of Monte Carlo
simulations using the delay function (Fig. 3). For large

8, it is more efficient numerically to use such an approach
than to integrate optical Bloch equations, as in Ref. [2].
We have checked that, for model I, f tends to 1. For
model II, the numerical experiment (squares) confirms
that f tends to a constant which agrees quite well with

the predicted value (interrupted line). As for model III,
we check that the decrease of f that we predict here for
8& 8, actually occurs. For numerical reasons, the time
range investigated cannot be extremely large compared to
8„and the slowly varying function K(8) cannot be test-
ed. So, we have fitted our numerical data (circles) with

the two parameter formula f ' -A„„(8/8,) 'i +K,
where the constant K mimics all the subleading terms.
As can be seen in Fig. 3, this form (full line) fits our data
extremely well. The value found for A„„also has the
right order of magnitude.

The Levy flights analysis can also yield the momentum

distribution p(p) of trapped atoms [11]. One finds that,
in agreement with the simple predictions of [2], the width

of p(p) decreases in 1D as 8 'i2, with no lower limit,
when 8 is increased. Such a result is extended to 2D and

3D. The wings of p(p) are also found to decrease in the
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FIG. 3. Variations with the interaction time 8 of the propor-
tion f of trapped atoms ((pl & pi„i,), calculated from N Monte
Carlo runs for the models II and III of Fig. 2. Model II
(squares): N 4000, pg -0.56k, pi„i, 0.08hk; the interrupted
line represents the asymptotic theoretical prediction f 0.365
corresponding to Eg/hl' 0.59. Model III (circles): N

I 6000 pg 0.5h k, pt„~ 0.08h k, p, 9.4h k; the full line
represents the best fit for the asymptotic theoretical prediction
(see text). Model Il requires more computer time than model
III. This is why N is smaller and the statistical uncertainty
larger.
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trapping zone as I/p, i.e., more slowly than for a
Maxwell distribution. Note that the momentum distribu-
tion explicitly depends on the interaction time 0. Such a
nonstationary behavior, which is typical of Levy process-
es, is a signature of "weak ergodicity breaking" [13]. Er-
godicity requires the possibility to average the evolution
of a single atom over an interaction time 0 long compared
to any characteristic time. But here, as long as 0 can be,
there are always characteristic times (trapping times)
which can be longer than 8, provided that p is small
enough.

In conclusion, we have established fruitful connections
between two diff'erent fields: laser cooling of atoms to ul-

tralow temperatures, on the one hand and statistical
description of anomalous diff'usion processes, on the other
hand. Laser cooling can provide simple and realistic
models of random processes with unusual features. Re-
ciprocally, in the laser cooling field, where one tries to
push the limits farther and farther, and where, corre-
spondingly, detailed microscopic calculations become
more and more intricate, global approaches, such as pure-

ly statistical ones, seem to us very useful. For example,
we have established here for the first time that the pro-
portion f of cooled atoms should, at ID, decrease as
8 'I at long interaction times 8. The shape of the full

momentum distribution p(p) can also be investigated. In
our new approach, the emphasis is shifted from optical
Bloch equations to the much simpler determination of the
asymptotic behavior of the distributions of trapping times
and first return times, which contain the relevant parame-
ters controlling the cooling efficiency [14].
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