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Determination of the Geometry Factor for Longitudinal Perturbations
in Space-Charge Dominated Beams
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We present the results of an experimental investigation of the parametric dependence of the geometry
factor g associated with line-charge perturbations in space-charge dominated beams. The experiment

consists of a novel method of launching localized space-charge waves and measuring simultaneously the

wave velocity and the radius a of an electron beam propagating through a periodic focusing channel with

pipe radius b. We find that the g factor obeys the relation g 2ln(b/a). This result is supported by

theoretical analysis, and is also in agreement with previous theoretical work. The experimental tech-

nique can be used for any type of beam, whether space charge dominates over emittance or not.

PACS numbers: 41.85.Ja, 29.27.Bd, 29.27.Fh, 52.35.—g

a =1 —(r/a)', (3)

with r being the radial position within the beam. This re-
lation implies that the g factor, as well as the field F„is a
maximum with a=1 on the axis, and reduces paraboli-
cally to a minimum with a=O on the beam edge. Av-

eraging the field over the beam cross section yields
a=0.S. Hence, there is the question as to which value of
a should be used. Indeed, Neil and Sessler raised this
question from the very beginning: "This involves some
average of E, over the beam cross section but. . . the pre-
cise average required is not clear. Because F,, varies
slowly across the beam, we will. . . employ E, (r =0), al-
though E, (r=a) is probably more accurate. " In the
literature following this early work most authors (e.g.,

The geometry factor g is an important parameter in

longitudinal beam dynamics, which is discussed in most
accelerator and beam physics books [1-5], as well as in

other literature on plasma physics and fusion energy
research, microwave theory and devices [6-8], etc. It re-
lates the longitudinal electric field associated with a per-
turbation in a beam with the line-charge density varia-
tion. Under the long-wavelength limit this relationship
can be expressed in the form

E, (z, t) =-— t)Ai(z, t)
4traoy

where A~(z, t) is the perturbed line-charge density, eo is

the permittivity of free space, and y is the Lorentz factor.
For a round, unbunched beam of radius a in a pipe of ra-
dius b the g factor can be represented by the general,
long-wavelength formula

g =21n(b/a)+ a,
where a is a constant for which difTerent values (1, 0.5,
and 0) can be found in the literature. Neil and Sessler, in

their original work [9], treated longitudinal instabilities
of beams in particle accelerators. They used a uniform-
beam model with constant radius a, and derived the rela-
tion

[3,4]) use the value u=i though the average value of
a =O.S would be more appropriate. The constant-radius
assumption applies to emittance-dominated beams, as in

circular accelerators. However, such beams have a
Gaussian profile, and it is not clear to what extent the re-

sults of the uniform-beam model are valid. For space-
charge dominated beams, the uniformity of the particle
density is a good approximation, but the radius does not

remain constant so that Eq. (3) is not applicable. These
questions concerning the theoretical models have motivat-
ed our investigation. So far, to the best of our knowledge,
there has been no report on any measurement of the g
factor which would permit a direct comparison and check
with the theory.

We have developed a novel method to determine, for
the first time, the parametric dependence of the g factor
associated with longitudinal perturbations in a beam. In

this technique, localized space-charge waves are launched
on the electron beam in a periodic solenoidal focusing
channel and the propagation velocities of these waves are
measured. At the same time, the beam radius a is in-

dependently measured by a phosphor screen plus charge-
coupled device (CCD) camera technique. This leads to
an experimental determination of the parametric depen-
dence of the geometry factor g on the radius a. We used
this method to determine the g factor in the case of our
space-charge dominated electron beam, as will be dis-

cussed below.
The experimental setup shown in Fig. 1 consists of an

electron beam injector [10] and a 5-m-long periodic
solenoidal focusing channel [11]. The key device in the
injector is a gridded electron gun which is able to produce
the desired beam parameters with localized perturbations
[12]. When the beam propagates downstream, the wave

speed can be measured accurately by five fast current
monitors. Typical beam parameters in the experiment
are beam energy of S keV, beam current of SO to 70 mA,
transverse eITective emittance (4& rms) of about 90 prad,
and pulse length of 70 ns. The localized space-charge
waves are positioned on the central region of the beam
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FIG. l. Schematic of experimental setup.

pulse. The maximum traveling time of the waves is less
than 10 ns. Thus, the Aat-topped 70 ns beam pulse acts
like a continuous beam for the propagation of the space-
charge waves, and the nonlinear space-charge forces at
the ends of the beam pulse have no eff'ect on the measure-
ment. The solenoidal transport channel consists of 36
periodically spaced lenses, with period length of S =13.6
cm. Three additional lenses are used to match the beam
from the gun into the channel. The phase advance oo of
the particle betatron oscillation per period without space
charge, which is a measure of the magnetic focusing
strength, is varied between 45' and 90'. With these pa-
rameters the phase advance rr of the particle betatron os-
cillation per period with space charge is in the range of
0.19oo to 0.34oo. Such a large tune depression implies
that the beam is space-charge dominated so that the uni-

form beam model for the propagation of space-charge
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waves ls valid.
Figure 2 shows the beam current signals at three

difTerent locations along the channel. The beam current
in this measurement is 56 mA. It can be seen clearly that
the two (slow and fast) space-charge waves move away
from each other. The velocity c, of the space-charge
waves in the beam frame is determined by the longitudi-
nal force and is theoretically related to the geometry fac-
tor g by

e., = (egAo/4zmeoy') '~', (4)

~here Ao is the unperturbed line-charge density of the

beam, and e/m denotes the ratio of charge to mass of the
particles. The time interval between the two space-
charge waves, which can be measured very accurately at
difTerent locations along the channel, is related to the

traveling distance z by

Csht= z,(12~+20 s
(5)

~here t 0 is the beam velocity. Figure 3 plots the time in-

terval of the two space-charge waves as a function of the

channel distance for two diA'erent phase advances oo,
where the beam energy is 5 keV and the beam current is

about 56 mA in the experiment. A least-squares fitting of
the experimental data yields bi/z, and hence the wave ve-

locity c, according to Eq. (5); using this value of c, one

can determine the geometry factor g from Eq. (4).
The beam radius a is measured by the phosphor screen

plus CCD camera technique [13]. A typical beam image
and its profile are shown in Fig. 4, indicating a relatively

liat-topped, uniform density distribution across the beam,
which is consistent with a space-charged dominated

beam. The diameter of this image is measured by its
FWHM (full width at half maximum). Because of the
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FIG. 2. Beam current wave forms with perturbations mea-

sured at the channel distances of z 0.624 m, z -3.48 m, and

z 5.25 m, respectively (z 0 is the cathode position), where F
is for the fast wave and S is for the slow wave (ordinate is the

current amplitude in relative scale).
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FIG. 3. Time interval between two space-charge waves vs

drifting distance for two diferent phase advances ao, as mea-

sured by the five current monitors. The solid lines are least-

squares fits of the experimental data.
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FIG. 4. Typical beam image and its profile, showing a uni-

form density distribution across the beam.
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periodic focusing, the beam performs envelope oscilla-
tions under matched conditions. The measured matched
beam envelopes in the last two periods of the channel for
two different phase advances oo are shown in Fig. 5. The
average beam radii are obtained from these experimental
data. In the experiment the beam radius a can be
changed by adjusting the phase advance oo at a fixed
beam energy and current, or by varying the beam energy
and current at a fixed phase advance cd. In Fig. 6 the
measured average beam radii for seven different experi-
mental conditions are compared with the results from the
smooth-approximation theory [5], showing a very good
agreement between the experiment and theory.

Using the two experimental results for the g factor and
the beam radius a, we plotted the g factor against the
corresponding beam radius in the form of ln(b/a) for
different experimental conditions as shown in Fig. 7. A
least-squares fitting of these data yields the relation of the

g factor as a function of the beam radius a, suggesting
that the correct formula for the g factor is g =2ln(b/a),
i.e., a=0.

The theoretical formulas (I) to (3) for the longitudinal
electric field within the beam and the geometry factor g
can be derived following the approach in Refs. [9,14]. A
schematic is shown in Fig. 8 to depict the procedure. Un-
der the long-wavelength condition, e.g. , X&)b/y, where k
is the wavelength of the perturbation, the radial electric
field and the azimuthal magnetic field are given approxi-
mately by

A r P 1E,= r~a, r~a,
2K' g 2Ã8p
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~here A is the line-charge density of the beam and po is

the permeability of free space. Applying Faraday's law

in the dashed rectangular area yields Eqs. (I) to (3). In

the derivation, the authors of Refs. [9,14) used a uniform

beam model and the following two assumptions: All the

perturbed quantities vary as e' ' ', including the beam

volume density p; the beam radius a is constant. If the

space-charge forces play a significant role, the assump-

tion of a constant beam radius under perturbations is no

longer valid, as mentioned above. To model the average

behavior of the beam radius we used the K-V envelope

4

FIG. 6. Comparison between the experimental beam radius

(the data points) and the result from the smooth approximation
theory (the solid line), where a is the phase advance with space
charge.
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FIG. 5. Measured beam envelope in the last two periods of
the channel for two different phase advances oo.
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FIG. 7. The measured g factor vs ln(b/a). A least-squares
fitting of the experimental data yields g= 2.011n(b/a) —0.01,
suggesting the correct formula g=2ln(b/a) as indicated by the
solid line.
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equation for a matched beam in the smooth approxima-
tion which yields the approximate relation [5]

r ' l/2

() A(z)i
C ko

(8)

A(z) C
p 2

=— const.
tra '(z) (9)

Following the approach of Refs. [9,14] but using Eq. (9)
instead of a const, we derived the relation

g 2 1n (b/a ) (10)

for a space-charge dominated beam. This agrees with

our experimental results. For an emittance-dominated
beam (a const) we recover the results (2) and (3) of
Neil and Sessler [9] (see Ref. [5] for further details).
The relation (10) can also be deduced from previous
works based on the field theory approach [15-17] and
can be found in Ref. [18], where the method based on
I)uid equations was employed.

From Eqs. (1) and (10) it follows that the longitudinal
electric field F., inside of the beam is independent of the
radial position. The experimental parameters show that
the reactive skin depth c/to&, where c is the speed of light
and m& is the plasma frequency, is muck larger than the
beam radius a. Thus the field F., in the interior of the
beam is not zero, as one might infer from the "surface-
wave" concept [17,18], which does not apply to the long-
~avelength limit of our model and the experiment. Al-

though the volume density remains unperturbed, we ob-

where C=2tra0(tttc /q)P y kti, ko=oo/5, and s is the
transverse emittance. In an emittance-dominated beam,
where s/ktt»A(z)/C, perturbations of the line-charge
density A(z) have a negligible eA'ect on the beam radius
so that a const is a good assumption. The perturbation
of A(z) appears as a longitudinal variation of the volume

charge density p(z) in this case. By contrast, if space
charge dominates, we find from (8) that the beam radius
changes according to a (z) = A(z)/C and hence that the
volume charge density p remains constant, i.e., indepen-
dent of z [5],

served experimentally that the velocities of the particles
within the beam are perturbed, as well as the beam
current.

In conclusion, we have developed a novel method for
the experimental determination of the g factor associated
with longitudinal charge perturbations in unbunched
beams. %e also reported the results of a theoretical
analysis in which the variation of the beam radius with

space charge and emittance is accounted for. The new

experimental technique was applied to a space-charge
dominated electron beam, and the experimentally deter-
mined relation for the g factor was found to be in good
agreement with our own analysis and with the results of
diA'erent previous theoretical models.
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