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A new region characterized by Levy diffusion exists in collective motion between the adiabatic and di-
abatic limits. Repeated chaotic scattering off of level crossings, whose repulsive or attractive nature
changes dynamically, can result in localization of the collective motion for arbitrarily periods of time,
and anomalous diffusion.
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Complex systems, from nuclei, atomic clusters, and de-
formable cavities to various mesoscopic systems, have
characteristic to them degrees of freedom which one can
identify as low frequency/slow and fast/intrinsic. While
in some systems there is a natural separation of these de-
grees of freedom, in strongly interacting many-body sys-
tems such as nuclei, there is no a priori obvious separa-
tion of collective degrees of freedom. Experimentally,
however, there are striking experimental signatures of
large amplitude collective motion which can be well de-
scribed by a few collective variables. Over the past de-

cade, there have been many advances concerning the na-
ture of the collective manifold and how it can be realized
from an interacting fermionic theory [ll. In particular, it

has been shown that one can perform an approximate
separation of a general many-body Hamiltonian into a
collective piece H, (Q,P), whose dynamics evolves on a
collective submanifold of the full theory, and the remain-

ing noncollective component [2].
With such constructions of the collective manifold, one

can in principle consider families of collective surfaces
describing the total energy states of the system, or

perhaps the interaction of two nearby mean-field con-

figurations. The relevant physics now concerns how one

hops between surfaces when two manifolds are close,
which is frequent when the density of (total energy)
states is generally high. The interplay of the collective
and intrinsic degrees of freedom plays a central role in

the microscopic understanding of macroscopic phenome-

na from dissipation, energy transfer, and the nature of
collective diffusion. Common approaches (for the case of
nuclei) are to assume either an adiabatic dynamics [for
instance, applying adiabatic time dependent Hartree-
Fock (ATDHF) approximation) or diabatic Landau-
Zener (LZ) dynamics (such as dissipative diabatic dy-
namics [3]) near this "avoided level crossing, " motivated

by the pioneering study of Hill and Wheeler as well as
many more recent investigations [1,3-5]. The limit is ar-
bitrarily selected by the value of the LZ probability P,
with P~ —,

' (P~ —,
' ) indicating that diabatic (adiabatic)

methods are best. I show here that this transition region
is "chaotic, " and cannot be simply characterized by a

smooth passing from adiabatic to diabatic pictures, and

even simple corrections to the adiabatic picture are often

not sufhcient. The smallest departure from the adiabatic
dynamics can be nontrivial and result in very surprising
phenomena. In particular, one can have repeated chaotic
scatterings of the collective variables off of these avoided
level crossings, resulting in a new regime of anomalous
collective diffusion, and that identical level crossings can
have completely opposite effects on the collective dynam-
ics, acting as sources of either repulsive or attractive
forces, and that even this can change in time (dynamical-
ly). In conventional diabatic treatments as well as sto-
chastic formulations of collective diffusion, one con-
sistently obtains as the time scale for irreversible behavior
r —10 s [6]. Stochastic models which include random
noise with this time scale provide an external source for
irreversible effects which is directly responsible for
diffusive behavior and the introduction of dissipation. In

this same time scale, the collective motion already in-

teracts with a number of avoided level crossings [3-6]. I

will show that a diffusion process exists which is dynami-
cal and reversible and hence does not require the stochas-
tic inIIuence of an external agent, and that avoided level

crossings are responsible.
In order to clearly understand the underlying physical

mechanisms, I introduce here a tractable Hamiltonian in

the spirit of the LZ model, which while idealized, still

embodies the basic physical ingredients: It includes
schematic residual interactions (e.g. , pairing, multipole
deformation, etc.) coupled to collective motion, allows for
both adiabatic and diabatic limits, and has many avoided

level crossings:

p2 singh= +V, V=K —sing

I have assumed that h is known in the vicinity of several

level crossings, and (1) contains the essential interaction
information. Here g, P are collective variables, and 2tch

is the energy gap at the avoided crossings (the periodicity
is not relevant for our results. ) Since many similar models

have been used, from studies of LZ hopping between col-

lective surfaces to extensions of the time dependent

Hartree-Fock method to include residual interactions

[1,3-5,7,8] it should come as a surprise that there is still

much more physics hidden in (1). The energies of the in-
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teraction V are E+ =+ x.v A +sin Q, which has avoid-

ed level crossings at Q=nzr, n=0, ~ 1, . . . ; see Fig. 1

(top). The quantum time evolution of the intrinsic states
can be described in terms of its density matrix,
parametrized as

1+z x —Iy

x+ty 1
—z

=—(1+a".r),1

2
(2)

where r=(x,y, z). A pure state p =p has r=1, and a
mixed state p &p has r ( 1. The resulting dynamics are

Q =P, P = —xz cosQ, r =2m.axr, (3)

FIG. 1. Top: Eigenstates E+ of the interaction V between
collective and intrinsic states (solid). Adiabatic surfaces of h
(dashes; 4 0). Bottom: Phase space of the (adiabatic) collec-
tive dynamics, for fixed z) 0 (solid) [z &0 is shifted by iz
(dots)]. The quasibound states have E &z, and the unbound
states E )z are separated by the separatrix E z.

where a=(6,0,sinQ), and the last equation is ip =[A,p],
and is fully quantum. The density matrix evolves self-
consistently with the collective trajectory. These equa-
tions have two integrals of motion, r =const and
E =Pz/2+ xa r, and can be derived from the Lagrangian

p2
X =PQ+ AD r — + a.a r

2
(4)

z(y, —x,O)
D 2r(r' —z') '

where AD(r) is a Dirac gauge potential [9-11]. While
this model consists of the fewest possible number of de-
grees of freedom, it is already chaotic; certainly less
idealized systems will be even more so.

The completely integrable limits of h correspond to
different types of adiabatic collective dynamics. If one
takes x 0, the intrinsic and collective spaces decouple,
and [h,p]=0. The equations of motion become r, P, Q
=const, so the collective coordinate moves at uniform ve-

locity (Q cx t), while p is static. The second integrable

limit occurs in the absence of "residual interactions, "
A, =O, giving real level crossings. The equations in this
case are z =const, x —y(sinQ), y =xsinQ, and Q
+xz cosQ =0. Although [h,p]&0 here, by changing to a

rotating frame, this limit satisfies the equivalent ATDHF
(or cranked Hartree-Fock) adiabaticity condition, since

Q(r ) obeys the dynamics of a pendulum. Since
z =p~~ —

p22 measures the intrinsic population diA'erence,

this regular limit also has no transitions. The collective
phase space is shown in Fig. 1 (bottom) for z & 0 (solid)
and z & 0 (dots). One sees surprisingly that the collective
dynamics evolves on one of two intertwined noninteract-
ing adiabatic surfaces (dashed lines in Fig. I top, and

bottom of Fig. 1) with a periodicity. different (by a factor
of 2) from the level crossings of V (solid lines in Fig. 1,
top).

Now consider the full dynamics (3). The slightest
departure from the adiabatic dynamics results in motion
which is nonintegrable, the collective dynamics obeying a
variation of the equation of motion of the pendulum,

Q+ ir(pi i pzz)cosQ =0, (s)

where z—= x'(pii —p2z) =xz is a dynamical variable with

range —rcr(z (xr (one can choose x ~0 without loss
of generality). The pendulum phase space is shown in the
bottom of Fig. 1, for two fixed values of z: z & 0 (solid)
and z &0 (dots). A manifestation of the difference in

periodicity of the exact versus the adiabatic dynamics
(compare Fig. 1 top and bottom) is that neighboring level

crossings have opposite forces associated with them: At-
tractive points Q -2nzr are surrounded by repulsive points

Q =(2n+1)zr. Further, the attractive or repulsive nature
changes in time according to the sign of z, the population
difference. Hence seemingly identical avoided level cross-
ings (Q =nor) have different forces associated with them
in the full dynamics (3), which vary in time due to non-
adiabatic transitions. This is in stark contrast to the LZ
scheme which has the same prediction for such identical
level crossings.

This nonintuitive behavior also gives rise to dynamical
localization and diffusion phenomena. Assume E & z

xz. If there are infrequent nonadiabatic transitions
(collective energies residual interactions), z will

remain fairly constant, and the collective motion will
remain bound behind the sepatrix [Fig. 1 bottom (solid)l.
(Strictly speaking, the separatrix only rigorously
separates localized and free states for z const. But for
collective trajectories not near the separatrix and z-0 it
can still be used to interpret the dynamics. ) When a
nonadiabatic transition occurs, the population shifts, and
z will change sign, passing through zero, at which point
the separatrix (E =z) in Fig. 1 will vanish, and reappear
shifted along the Q axis by ir [Fig. 1 bottom (dots)]. As
a result, motion which had been (quasi) trapped in the
well can now become free: The collective trajectory can
appear on the other side of the separatrix, corresponding
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FIG. 2. Diffusing collective trajectories Q(i) displaying tem-
porary localization in phase space as a result of a nonadiabatic
transition. As 6 0, the localization times become infinite (or
zero), and the dynamics adiabatic. The two distinct elements of
trapping within repulsive level crossings, and the large scale
(adiabatic or diabatic) motion through many level crossings, are
characteristic of Levy flights. The spacing between level cross-
ings is n.

to free motion. Subsequent shifts in the population will

resu)t in the collective trajectory becoming trapped again.
The converse also holds for E )z. Such collective trajec-
tories Q(t) are shown in Fig. 2. One can see as Q(t)
evolves that it becomes trapped by level crossings (the
repulsive crossings force a temporary localization), due to
chaotic scattering oA' the (repulsive) level crossing, losing
to internal excitation, and cannot escape until there is

su%cient energy exchange. This can be quite long—there are trajectories which are trapped for arbitrary
lengths of time; in other words, the collective scattering is

fraetal. When it can escape, there is generally sufficient

energy for it to pass through many avoided level crossings
before becoming trapped once again. This has the
characteristic behavior of anomalous diA'usion processes
known as Levy flights: diffusion on short times (trapped
situation) together with large steps of arbitrary size
(motion through many level crossings adiabatically or di-

abatically), characterized by the non-Brownian property
(Q (t))~t', 0(a(2 [12]. As 5 0, the level cross-
ings become real, the motion adiabatic (integrable), and
the localization times become infinite (or zero depending
on what side of the separatrix the collective trajectory is

on). This is precisely analogous to the stochastic model-

ing of anomalous diAusion, where one typically has a ran-
dom potential which alone admits either free motion or
localized states, and thermal noise, which can move a lo-
calized state from one local minimum of the random po-
tential to another [12]. In the present case the
collective/intrinsic interaction plays the role of the ran-
dom potential, and the nonadiabatic transitions act as the

FIG. 3. Maximum Lyapunov exponent of h, averaged over
phase and Hilbert space as a function of 6 and x. The system is
generally quite chaotic, but also completely (adiabatic) inte-
grable for h, 0 as well as for ~ 0.

random noise. Hence one can achieve dynamically the
diA'usive behavior of collective motion one puts in by
hand in other models of collective motion.

The modification to the simple adiabatic/diabatic
classification is explored in Fig. 3, where I consider the
range of collective energies and residual interaction
strengths used in the past to address LZ behavior in nu-

clear collective motion [7,8] (e.g. , collective energies of
similar order of magnitude as residual interactions).
Here, the maximum Lyapunov exponent Q,~,. „), averaged
over phase space and Hilbert space, is plotted as a func-
tion of d and x. (I use iPi (2; for large iPi one is in the
diabatic limit and feels the finiteness of the two level Hil-
bert space, requiring more levels to study such situations
further. ) In spite of the excessive regularity of our model
system, it is important to observe that the slightest depar-
ture from adiabaticity (the d, and ir axes) can result in

chaos, and that chaos implicitly means that the collective
trajectory will "bounce oA

' or scatter from the level

crossings. Hence the localization and anomalous diA'usive

phenomena are ubiquitous to the dynamics beyond the
adiabatic approximation. it is not hard to see that this
novel mechanism is generic and will persist to less ideal-
ized and inherently more chaotic systems.

The diA'usion constant D(t) induced by repeated chaot-
ic scattering from the (repulsive) avoided crossings can
be computed using the Green-Kubo theory. By defining
the ensemble as a uniform quantum population and a
Gaussian distribution (of width 2) in momentum at

Q =0, one obtains D(t), where (Q (t)) D(t)r, as shown

in Fig. 4. For short times, the motion is ballistic, with
D(t)-r. On longer time scales, the memory eA'ects due
to bouncing off of sequentia1 level crossings result in an
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also be emphasized that this separation of slow classical
and fast quantum modes is not restricted to nuclei, and
the results here should apply to other many body systems
which exhibit large amplitude collective motion such as
atomic clusters, deformable cavities, finite Fermi systems,
and so forth.
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FIG. 4. Diff'usive behavior of the collective coordinate ig )
D(t)t, as induced by level crossings. For small times, the

motion is restricted to a single potential well, and diffusion is
ballistic, gcL't. On longer time scales, the interaction induces
an approximate behavior of (Q )cx:t t, which indicates per-
sistent fractional Brownian-type behavior.

anomalous diffusion of D(t) rxt' ' with a- 4 . Possible

effects of anomalous diffusion will be on time dependent
quantities such as response functions, fission time distri-
butions, and so forth. Thus, the adiabatic-diabatic
scheme, motivated by even a simpler model than (I ),
must be modified to include a quantitatively new regime
of anomalous diffusion. When the two energies in Fig. 1

are well separated (i' large) due to strong residual in-

teractions, and conditions seem favorable for application
of ATDHF, Fig. 3 shows that the slightest departure
fmm the adiabatic approximation yields chaos, regardless
of the strength of xh. Further, even identical level cross-
ings can have opposite dynamical effects on the collective
dynamics, in complete contradiction to the two state
adiabatic/diabatic wisdom. As a consequence, I find a
new dynamical mechanism for collective diffusion: chaot-
ic scattering off level crossings. As a result, the LZ
mechanism, which occurs on long time scales, is modified
locally at the level crossing by chaos. Finally, it should
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