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The nucleon-nucleon potential obtained from the most general effective chiral Lagrangian involving
low momentum pions, nonrelativistic nucleons, and A isobars was considered to third order in the chiral
expansion. The parameters of the potential were adjusted to reproduce the low energy nucleon-nucleon
scattering phase shifts as well as the properties of the deuteron. Reasonable fits are obtained in this first
application of a nucleon-nucleon potential based on chiral symmetry.
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Theoretical efforts to account for the nucleon-nucleon
(NN) interaction have been underway for many decades.
Early field theoretical approaches [1] in the 1950’s were
generally unsuccessful. These eventually gave way to
more phenomenological treatments [2] which provided a
pragmatic way to describe the abundant NV scattering
and bound state (deuteron) data. Beginning in the 1970’s
theoretical models emerged which were more successful
than in earlier attempts. These were based on one-pion
exchange (OPE), heavy meson exchange, and multi-
meson exchange plus short-range phenomenology [3-5].
The Paris [3], Nijmegen [4], and Bonn [5] models are
representative of these more recent efforts. The Paris
model includes OPE and single w-meson exchange along
with two-pion exchange (TPE) contributions calculated
using N phase shifts, nx interactions, and dispersion re-
lations, plus short-range phenomenological potentials.
Regge pole theory was used by the Nijmegen group to
obtain a VN interaction model which includes numerous
one-boson exchange terms with exponential form factors
and repulsive central Gaussian potentials arising from
Pomeron and tensor trajectories. The Bonn group includ-
ed a number of one-boson exchange terms plus two-
meson exchanges (2x, np, and nw), correlated TPE in the
form of the exchange of an effective scalar meson,
effective three-pion exchange, and intermediate A isobars,
all in the context of *‘old fashioned” perturbation theory.
Each of these models contains many parameters and each
provides impressive agreement with the deuteron data
and with NN scattering data up to 350 MeV laboratory
kinetic energy.

Despite this considerable effort the connection between
the NN interaction and the underlying theory of the
strong interaction, assumed to be quantum chromo-
dynamics (QCD), remains mysterious. In the above
models it is not possible to distinguish terms which are
“put in by hand” from those which are required by QCD.
In particular, any effective mesonic theory should at least
share the same symmetries of QCD, like (approximate)
chiral symmetry. Furthermore, meson exchange models
generically lack a consistent and systematic approxima-
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tion scheme which justifies neglecting or keeping some
contributions.

Partly to overcome these deficiencies Weinberg [6,7]
recently applied the method of phenomenological La-
grangians [8] to a system of low momentum pions and
nonrelativistic nucleons. The starting point is the most
general Lagrangian incorporating the approximate chiral
symmetry of QCD, written in terms of the pion and nu-
cleon fields and their covariant derivatives. Higher mass
mesons and baryons are integrated out (except for the A
as in the present work), their effects being contained in
undetermined coefficients that multiply nucleon contact
terms as well as terms with more derivatives. The use of
old fashioned perturbation theory allows a ready separa-
tion of the connected diagrams which form the potential
from the disconnected diagrams that are summed by solv-
ing the Lippmann-Schwinger or Schrdodinger equations.
Weinberg showed that a systematic expansion of the nu-
clear potential exists in powers of (Q/M) where Q is the
typical momentum involved and M is a characteristic
QCD mass scale. He also considered the leading terms.
Subsequent work by two of us [9] extended the expansion
of the Lagrangian in Refs. [6] and [7] to second order
and extended the potential to order (Q/M)? including all
TPE, one-loop terms.

What distinguishes the present approach to the two-
nucleon problem from others is the use of a general
effective chiral Lagrangian and the development of a sys-
tematic perturbative expansion of the potential based on
powers of (Q/M). This approach is a priori model in-
dependent and is completely consistent with the sym-
metries of QCD and with low energy =z and z/N scatter-
ing [10].

In the present work the second order chiral Lagrangian
of Ref. [9] was extended to include the A (1232 MeV)
isobar. TPE one-loop diagrams with one or two inter-
mediate A’s were added to the VNV potential. Complete
details will be presented in a later publication [11]. The
main purpose of this Letter is to report the results of nu-
merical calculations which demonstrate the capability of
the chiral symmetry potential for describing low energy
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NN data. It is not our intention to present a /NN interac-
tion model which is phenomenologically superior to the
many others [2-5] which already provide excellent
descriptions of NV/V data. Rather we intend that this work
and that in Refs. [6], [7], and [9] establish a link between
QCD and models of the NN force, a link which is made
credible by the ability of the model to fit NNV data as
demonstrated here.

In principle the undetermined coefficients of the poten-
tial can be calculated from QCD. Here, however, we ob-
tained values for these coefficients by freely adjusting
them such that the deuteron properties and low energy
NN scattering phase shifts are well described. Given that
the form of the VN potential is fully determined by the
effective chiral Lagrangian and the perturbation expan-
sion, the ability of this chiral potential to describe NN
data is a nontrivial result.

In Refs. [6] and [7] Weinberg obtained the lowest or-
der NN potential consisting of the usual static OPE part
plus spin-dependent NN contact terms. This lowest order
potential is of course too simple to account for the known
properties of the NN force [2-5] (e.g., intermediate-
range attraction, short-range repulsion, and spin-orbit
term). Extension of the effective chiral potential to order
(@/M)? in Ref. [9] and the inclusion of intermediate A
isobars here is sufficient to generate the relevant features
of the VN potential with respect to spin structure and
range.

The present chiral symmetry potential includes the
usual long-range static OPE term with axial coupling
constant g4 and pion decay constant F, plus corrections
to the OPE potential that can be thought of as arising
from expansions of the zZVN form factor through second
order in momentum, resulting in two undetermined
coefficients. Nonstatic corrections to the OPE terms aris-
ing from the recoil of the nucleon upon pion emission are
also included through second order in momentum. In
momentum space this correction is given by an energy-
dependent term,
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where & and g are the average NN momentum and

momentum transfer, respectively, the nucleon spin (iso-

spin) operator is denoted by o(z), the pion (nucleon)

mass is m, (my), and E is \/;—Zm,v. The recoil correc-

tion in Eq. (1) replaces that erroneously given in Eq. (6)
of Ref. [9].

Intermediate-range contributions are included via a

(n

number of TPE terms with either zero, one, or two inter-
mediate A isobars where the 7ZNA coupling constant k4
was allowed to vary but the A mass was fixed to 1232
MeV. Contributions of box and crossed box diagrams are
standard [1]. Iterated OPE graphs (up to one loop) with
one or two intermediate A isobars are included in the po-
tential rather than being included via coupled channels
[12]. We emphasize that there also exist in our potential
TPE contributions that are less common, some of which
are fixed by chiral symmetry in terms of g4 and F, but
others result from first-order corrections to the Lagrang-
ian which introduce three more undetermined coefficients.
One of these TPE diagrams gives rise to a scalar-isoscalar
interaction which is reminiscent of the o or ¢' exchange
in meson exchange models [5S]. We stress that these new
contributions from the nonlinear zN coupling are a
consequence of chiral symmetry and are usually not in-
cluded in meson exchange potentials. (An exception is
the work of Ref. [13], where, however, only those contri-
butions from the lowest order Lagrangian without the iso-
bar have been considered.) These terms represent the
only form of *“correlated” TPE in our potential.

Finally the short-range parts are given in terms of con-
tact terms. These contain the effects of exchange of
higher energy modes and are not constrained by chiral
symmetry, being only required to satisfy parity and
time-reversal invariance. Including terms through second
order in momentum results in 9 additional parameters for
each NN isospin state. In all, our potential contains 26
parameters.

In order to do the integrals over momentum associated
with the one-loop terms as well as the Fourier transforms
which were used to convert the momentum space poten-
tial into coordinate space (for the numerical calcula-
tions), we found it convenient, following the Nijmegen
group [4,14], to use a Gaussian cutoff function,
exp(—1%/A?), where [ is either the loop integration vari-
able or the momentum transfer and parameter A is of or-
der M. Other regularization schemes are possible; how-
ever, the cutoff method is appropriate given the nonco-
variant nature of the potential.

The potential in coordinate space has the form
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The 20 spin/isospin operators @7 are given by
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where S5, S, L, and L-S are the NN tensor, total spin,
orbital angular momentum, and spin-orbit operators, re-
spectively. The first 8 operators are standard while the
next 6 complete the set used in the phenomenological Ur-
bana v 4 potential [15]. The novel features of the present
potential include the V,,l and V,,2 terms for operators
p=1-8, and all of the p=15-20 terms. The 60 radial
functions ¥ in Egs. (2) and (3) (some vanish) are given
in Ref. [11].

The Schrodinger equation with the nonlocal potential
in Egs. (2)-(4) was solved by standard partial wave ex-
pansion methods where the total NNV wave function was
expanded in spin-angle basis functions assuming L-S cou-
pling. For spin singlets and uncoupled spin triplet partial
wave channels the first and second order derivative terms
in the potential were included by factoring the radial
wave function according to R,(r)=K,(r)¢,(r) (subscript
a indicates partial wave quantum numbers) and defining
K.(r) such that the sum of all first order derivative terms
of ¢,(R) vanishes. For the spin triplet coupled partial
waves an analogous procedure was followed except that
two sets of pairs of coupled, first order differential equa-
tions for auxiliary functions K.,'(r) were solved using the
fourth order Runge-Kutta method. Following the evalua-
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FIG. 1. Best fits (solid curves) to the /=0 np phase shifts
and the mixing angle ¢, from Ref. [16].
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tion of K(r) the usual second order, homogeneous dif-
ferential equation for ¢(r) was solved and the wave func-
tion determined by the usual scattering wave boundary
conditions. The resulting S matrix was parametrized in
terms of phase shifts and mixing angles as in Ref. [12].

The 26 parameters of the model were varied to optim-
ize the fit to the isospin 0 (np) and 1 (pp) phase shifts of
Ref. [16] at 10, 25, 50, and 100 MeV laboratory kinetic
energy for all states with total angular momentum J < 2.
The phase shifts for higher partial waves in this energy
range are determined by the OPE potential and were not
varied in Ref. [16]. The cutoff parameter A was taken at
3.9 fm ~! (the p mass; variation of the cutoff from 3.6 to
4.4 fm~' did not produce significant changes in the
fitting.) In addition the /=0 (3S,->D,) bound state in
the model was fitted to the deuteron binding energy, mag-
netic moment, and electric quadrupole moment. A grid
search of all parameters was initially conducted to rough-
ly locate a minimum in chi square. The fits were opti-
mized using the downhill simplex method of chi-square
minimization [17].
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FIG. 2. Best fits (solid curves) to the /=1 pp phase shifts
and the mixing angle &, from Ref. [16].
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The best fits are shown in Figs. 1 and 2 where quanti-
tative descriptions of the phase shifts were obtained for
most cases. The deuteron binding energy, magnetic mo-
ment, quadrupole moment, and asymptotic d-state to s-
state wave function ratio obtained are 2.18 MeV, 0.851
nuclear magnetons (uy), 0.231 fm? and 0.0239, respec-
tively, which compare well with the experimental values
of 2.224579(9) MeV, 0.857406(1)uy, 0.2859(3) fm?,
and 0.0271(4) (Ref. [18]). The calculated d-state frac-
tion is 4.97%. The L =0 singlet and triplet scattering
lengths predicted by the model (these were not used to
constrain the fit) are —15.0 and 5.46 fm, respectively, in
comparison with the measured values of —16.4(1.9) fm
(Ref. [19]) and 5.396(11) fm (Ref. [20]). The resulting
values of the parameters of the model will be provided in
Ref. [11] along with a complete description of the poten-
tial. The values of g4, h4, and F, from our fit are 1.33,
2.03, and 192 MeV, respectively.

In conclusion, the numerical results reported here show
that the general features of the NV potential can be un-
derstood on the basis of the symmetries of QCD. While
our method is not intended to provide descriptions of NV
data competitive with purely phenomenological or meson
exchange models, the numerical results do encourage the
use of this potential in calculations of nuclear structure,
nuclear matter, and few-nucleon systems at low energy.
The effective chiral Lagrangian approach may also prove
useful for analyses of wm-deuteron scattering and N/V pion
production.
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