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We present a solution of the problem of a free massless scalar field on the half line interacting through
a sinusoidal potential on the boundary. For a critical value of the period, this system is a conformal field
theory with a nontrivial and explicitly calculable S matrix for scattering from the boundary. It describes
the critical behavior of a number of condensed matter systems, including dissipative quantum mechanics
and of barriers in "quantum wires. "
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Conformal field theory is usually defined on a two-
dimensional manifold without boundaries (the simplest
case being the plane). It can also be defined on manifolds
with boundaries (like the disk or strip), provided that ap-
propriate boundary conditions are imposed [1]. The Dir-
ichlet and Neumann boundary conditions on scalar world
sheet fields are familiar, if trivial, examples. Nontrivial
conformal boundary conditions arise from the interaction
of boundary degrees of freedom with world sheet fields.
A wide range of systems, including open string theory
[2-4], monopole catalysis [5], the Kondo problem [6],
dissipative quantum mechanics [7-9], and junctions in

quantum wires [10],can be described this way.
The technology for dealing with boundary conformal

field theory is easily stated [11]: Consider a bulk confor-
mal field theory c confined to a strip of width L with

boundary conditions A and 8 on the two ends. This the-

ory has a partition function Zg„ tr(e ) where T is

the time interval and Lo is the open string Hamiltonian.
If the boundary conditions are conformal, the partition
function will be a sum Z,"~„gnhgh(e " I') over Vir-
asoro characters of the open string primary fields (the h

are the highest weights and the nh are the integer multi-

plicities of the characters). The partition function can
also be computed as the amplitude for closed string prop-
agation between states iA) and i8) of the bulk closed
string created by the boundary conditions A and 8:
Z~gosed (&ie ' ' i8), where Lo and Lo are the left-
and right-moving closed string Hamiltonians. For the
theory as a whole to be conformal, the boundary states
must satisfy a reparametrization invariance condition
(L„—L „)iA) 0 [2] which implies that each primary
field contributes to iA) a piece Cgg„)n))n), where the
sum is over all the states of the Virasoro module and Ch"

is a coefficient to be determined [12]. This gives a dif-
ferent expansion of the partition function in terms of
Yirasoro characters: Z~I~ =gqC)Cggh(e "'I ). The
dynamical problem is to find the specific primary fields pt,

appearing in both the open and closed string expansions
along with their multiplicities and weights.

The two expansions must of course be identical under

the "modular transformation" e ' ' e ' between
open and closed string variables. This consistency condi-
tion is often enough to explicitly determine the (finite-
ly many) boundary states of a rational conformal field

theory such as the Wess-Zumino-Witten theory (which
underlies the Kondo model [13]). Nonrational conformal
field theories are much harder to deal with since they
have an infinite number of primary fields and, presum-
ably, boundary states. In this Letter we will present an
approach to the solution of what must be the simplest
such theory: a single free scalar field interacting only via
a boundary periodic potential.

We will study free massless scalar field theory on the
interval 0(cr(l. A dynamical boundary condition at
a 0 is imposed by including a potential term in the oth-
erwise free Lagrangian:

r I
L = der(rI A')

8~ o
( eix(o)/K2+ — ix(o)tJ—2)

2E'

(1)
where e is the short-distance cutoff and g is a complex re-
normalized potential strength. To control infrared prob-
lems we impose a Dirichlet boundary condition, X(l) =0,
at 0 =l, but we eventually want to focus on the physics at
the o =0 boundary. The potential induces a perturbation
away from the free scalar field subject to the Neumann
(Dirichlet) boundary condition on the left (right) end of
the interval. The specific potential of Eq. (1) was chosen
because it has boundary scaling dimension one and in-

duces a marginal perturbation away from the conformal
fixed point [14]. We will show that it is in fact exactly
marginal and induces a conformal boundary condition for
all values of g.

For the subsequent analysis it will be helpful to recall
some facts about the primary fields of conventional c =1
conformal field theory: There is a continuum of holo-

morphic primary fields ei" t'1 of weights h =k /2 (and
corresponding antiholomorphic fields). The associated
Virasoro characters are Zi, (q) =q" /f(q), where f(q)
=g„-i(l —q"). For special values of the momentum"

k, some descendant states have vanishing norm and new

primaries, the famous discrete states, appear [15]. They

1968 0031-9007/94/72 (13)/1968 (4)$06.00
1994 The American Physical Society



VOLUME 72, NUMBER 13 P H YSICAL R EV I EW LETTERS 28 MARcH 1994

are organized in SU(2) multiplets of spin J 0, —,', 1,. . . .
The (J,m) primary, y(i ), has weight h =J and a
Virasoro character which turns out to be g(i )(q)

(q q
+' )/f(q). There is an explicit representa-

tion for Iti(i yg) [16],

(0) ()
d2 —IJ2X(z)
2'

iiJ2X(P) (2)

which shows that it is a polynomial in tIX, 8 X, etc. ,
times a zero mode piece e™2x. The lowest-lying fields,

I)/I/2, ~ I/2-e —' /, are precisely the terms appearing in

the boundary potential in (1). Since products of Iti(i
fuse to other I)r(i ) by an SU(2) fusion algebra, the
operators appearing in a perturbation expansion in the
boundary potential should be spanned only by the
discrete states. This strongly suggests that the exact
boundary states are sums over the Virasoro modules of
the discrete state primary fields It/(i

Let us first check that the conjecture is true when the
potential vanishes (free field with one Neumann and one
Dirichlet boundary condition). The partition function is

easily found to be
OO

W
1/24

Z W
I/48 TT i W g W(j+ I/2)z/4

p n-i 1 -w" ' ' f(w) -p

where w e ' '. This shows that the energy levels of
this open string organize themselves into a set of Virasoro
modules with highest weights hi Ir(j+ 2 ) /2l. Using
standard technology, we can reexpress Zp in terms of the
closed string variable q =e '/ e ",with the result

2) —I/24 2) —I/24

Z g ( —1)"q "'= 8 (OI2f ),
J2f(q2) n--" J2f(q')

(3)
where the theta functions are defined using the conven-
tions of [17]. Because of the discrete state subtlety, it is
not so obvious how to read off the Virasoro modules
which propagate in the closed string channel. However, a
little experimentation shows that the contributions of the
discrete modules to the boundary states are

IBw&=2 I"Z ( —I)'IJ,0»,
J 0

(4)
OO J

IBD&=2 I/4Z Z IJ,m»,
J Om -J

where IJ,m» is the module associated with I/i(i, )(IBD)
also receives contributions from the continuum statese', although they have no effect on our considerations).
Equations (4) reproduce (3) and all partition functions
arising from other combinations of Neumann and Dirich-
let boundary conditions. To see this one just expands the
basic boundary state formula Zp =(BN Ie ' ' IB0)
with the help of the discrete state character formula

((J,mIe '"""IJ',m'))

( 2) —I/24
q [ 2iz 2(i+ I )z]
f(q')

We now want to turn on the potential and expand the
partition functions in powers of g and g. Since only one

boundary is dynamical, the only new element we need is

the massless scalar propagator between two points on the
same boundary of a cylinder of length t =I/T and cir-
cumference l. This standard object is expressed in terms
of theta functions as

8I (t I t2I2it )
(X(t, )X(t,)&. ,-—2 ln

84 ti t2 2tt
Expanding the partition function to first order gives

Z Z g +g —(x(p)x(e))/4
0

g+g 8I(012it)
2 8,(0I2(t )

(5)

(6)

To this order, the partition function zo+z1+z2, when

reexpressed in open string channel variables, can once
again be interpreted as a sum over open string Uirasoro
modules with shifted highest weights. This is a new piece
of evidence that the theory specified by (1) is exactly con-
formal.

1969

Note that we have eliminated the divergence of this am-
plitude by regulating the integrand (by point splitting of
the coincident-point propagators) and then by renormal-

izing the potential strength. The net first-order result, ex-
pressed in closed string channel variables, is

2) —I/24

Z n(g+g) g ( —I)"+ (2n+1)q "+
J2f(q') n-P

(7)
The powers of q which appear in the sum correspond to
the weights of the discrete states Iiv(i ~ I/2) for all possible
half-integer J and we can find a corrected IBN), contain-
ing such states, which reproduces (7). The dual transfor-
mation to the open string channel gives

ZT
ZI = — (g+g) g ( —l)i(2j+1)w

4I f(w) i p

This can be interpreted as a shift of the highest weights
of the Virasoro modules appearing in Zp, with the jth
module being shifted by ( —l)i(2j+1)n(g+g)/4l. The
main point here is that the perturbation causes all the en-

ergy levels of any given Virasoro module to have a com-
mon energy shift, which they must if the perturbation in

(1) is truly conformal.
Now consider the expansion of Z(g, g) to higher or-

ders. A new power law divergence, contributing to a shift
of the open string vacuum energy and arising from the

collision of an e' / with an e ' / insertion first ap-
pears in second order. It turns out to be possible to sub-
tract the divergence in this and a11 higher orders by a
simple principal value prescription. The second-order
terms (i.e., the g, g, and gg terms) organize nicely into

( 2 )
—I /24

Z 2 ( + ) 2 q g ( 1 ) n + I
q

2n n 2

f(q2) n-i
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%'e have carried out the expansion of Z to fourth order
and continue to find results consistent with exact confor-
mal invariance. We have even found a general expression
for the partition functions which we believe to summarize
the behavior of the theory to all orders: Everything we
know is consistent with the net eAect of the boundary in-
teraction being a shift of the highest weights of the open
string Virasoro modules by a universal, coupling constant
dependent, shift function. We claim that the exact
weight of the jth open string module has the form

h =
J

jr[j+ -'+( —I)'A(g, g)/jr]'

2l

When (8) is transformed to closed string channel vari-
ables, we obtain

( 2) —i/24

z(g, g) = q

2f(q')

I+2 g q""cos ""+no(g,g)
n

(10)

The remarkable thing about this expression is that, for
any value of 6, it involves only the weights of the discrete
states. Actually, some further conditions have to be met
in order for it to be possible to construct (10) by
sandwiching the closed string propagator between dis-
crete state boundary states. It is easy to see that on ex-
panding (10) in powers of g and g, the term of order g"g'
must come from (J,m) modules with m = (k —l)/2.
Since such modules have J» ~(k —I)/2~, and since the
discrete state weights are J, the q expansion of the g g
term must begin at q

) / . If these conditions are met
one can find an explicit expansion of the dynamical
boundary state of the form

oo J
I8(g,g)&=2 '/ g g Cj (g g)(J m)),

J Om —J

~here the CJ are expressed in terms of operations car-
ried out on h, . Low order perturbation theory calculations

&0)X(z)BX(u)8X(w)0)X( )) =G(,u, , ')

so that the open string channel partition function has the
form

~ —1/24

Z( -) g ~ [j+)/2+( —l) ja(g, g)/xl2/4

f()4j) j-0
Calculations out to fourth order are all consistent with
(8) with

Z3
~(g g) -—(g+g)+ (g'+g' 3g'g —3gg')+—

2 48

imply that

( —I) 5 0+ —( —I) +' (2J+ I

X (g$~ )/2+g j~ )/2)+

[Some notational license has been taken in that the first
(second) term is present only for integer (half-integer)
J.l

Although we do not have complete knowledge of h„
some interesting things can be said about it. The con-
sistency conditions fix all g" or g terms in the expansion
of h(g, g) in terms of the leading O(g) term. This turns
out to imply that h(g, 0) =arcsin()rg/2). Other informa-
tion on h(g, g) comes from considering the strong poten-
tial limit, e.g., g=g ~. It is physically clear that in

this limit the boundary state should reduce to a sum over
the Dirichlet boundary states localized at the minima of
cos(X/ J2). Similarly, for g — —~ the end of the string
is localized at the maxima of cos(L/J2). Indeed, the
correct partition function in these limits results from Eq.
(8) if a(g —~) = —A(g ——~) = jr/2.

The universal function h(g, g) should implicitly contain
all the physical information about the theory. A particu-
larly interesting set of questions arises in calculation of
the reflection S matrix from the dynamical boundary at
a =0, which is well defined for a semi-infinite string. The
S matrix is determined by correlation functions of opera-
tors 0)X and BX on a Euclidean half plane with the in-

teraction of Eq. (I) integrated along the boundary. For
example, doing straightforward perturbation theory in g
and g, we find that the two-point function is

(BX(z)IIX()v))=
(- —w) '

where the I I amplitude turns out to have the expan-
sion S(g,g) = —I+2jr gg+ . In the operator for-
malism,

&8(g g ) i 8X(z)8X()7) ) 0&

(8(g,g) ~0)

where (8(g,g)~ is the exact state for the dynamical
boundary, which is determined implicitly by Eq. (10).
Let us note that the only contribution to Eq. (12) comes
from the (1,0) module. The coefficient of this module in

the expansion of (8(g,g) ~
can be read off from Eq. (10)

with the result S(g,g) =I —2[cos2A(g, g)] —. The sub-

script means that we are to keep only the powers of gg in

the perturbative expansion of the right-hand side.
The most remarkable feature of our reflection 5 matrix

is that its n rn connected pieces, awhile nontrivial, are
entirely determined by the 1 1 amplitude. To show

how this works, let us consider the 2 2 amplitude,

1970

1 + + +(zF, , univ),
g 2 g 2

(z —u)2(w —i)' (= —i ) (u —w)2 (= —w)2(u —()'
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where F is the connected part. The existence of a null state among the descendants of aX at level 3 gives rise to a third
order differential equation [18],

a a g a I

a" 'a. , - a-, .--, a I
6 g 2 G(z, wi, w2, w3) 0.

i I awi (z wi
(i 3)

This equation determines the connected part in terms of
Ithe disconnected parts, and we find in part by DOE Grant No. DE-AC02-84-1553, NSF

Presidential Young Investigator Grant No. PHY-9157-
F(z, u, w, t ) = 482, James S. McDonnell Foundation Grant No. 91-48,

(z —t ) (z —w) (u —t ) (u —w) and the A. P. Sloan Foundation.
The Fourier transform of the Minkowskian continuation
of this is

F(Ei,E2,E3,E4) =2(l —S )8(Et+E2 —E3 E4)—

x(Et+E2 IEl E31 —IE2 E31) .
(i4)

where E; & 0. Curiously, this formula bears a strong re-
semblance to the 2 2 amplitude found in the c =1 ma-
trix model [19].

It appears that recursive application of the differential
equations to higher-point functions determines them en-
tirely. We find that the connected part of any I n am-
plitude vanishes, while for the 2 2n amplitudes

&aX(.~)aX(.,)aX(-, ) aX(wz„)),.„.
(z2 —zt) 2"

= —( —2)"(i —S')
Q;2-"i(zi —w;)(z2 —w;)

In Fourier space, these become piecewise linear functions
of the energies, similar to Eq. (14). This should be com-
pared with some results in dissipative quantum mechanics
[201.

In this Letter we have presented a solution of the c =1
conformal field theory with a boundary sine-Gordon in-

teraction. Conformal invariance imposes tight con-
straints on the partition function when viewed both from
the open string and from the closed string point of view.
Examination of the closed string channel allo~s us to
deduce the exact boundary state in terms of a universal
function of the complex potential strength. Remarkably,
the boundary state is built out of the Virasoro modules of
the well-known discrete states of the c = I conformal field

theory. From this information we determine a new non-
trivial 5 matrix for the scattering of the massless scalar
quanta from the dynamical boundary. Every correlator is
a simple rational function of coordinate differences,
which is an extraordinarily simple behavior for a nontrivi-
al field theory. In future work we plan to expand on our
results, and to discuss their applications to specific physi-
cal systems.
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