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Nonlocality without Inequalities for Almost All Entangled States for Two Particles
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We provide a streamlined proof of Hardy's theorem, that almost every entangled state for a pair
of quantum particles admits a "proof of nonlocality" without inequalities. Moreover, our analysis
covers a larger class of observables. Thus we also strengthen Hardy's assertion that the argument
fails for maximally entangled states, such as the singlet state. At the same time, we formulate the
argument in such a manner that the relations which must be satisfied for local hidden variables
are entirely deterministic, making no reference whatsoever to probability, let alone probabilistic
inequalities.

PACS numbers: 03.65.Bz

In a recent very interesting Letter, Hardy [1] shows
that almost all entangled states for a pair of spin-z par-
ticles admit a "proof of nonlocality" which does not in-

volve inequalities. While Hardy's proof is very simple, we
believe that Hardy's theorem is so nice that an even sim-

pler argument would be worthwhile. Moreover, our proof
generalizes Hardy's result in the following sense: While
Hardy's analysis concerns four observables the choice of
each of which is very much constrained by the quantum
state, for our argument the choice of one of the observ-
ables is almost arbitrary.

(I) Let lu;) and lv, ) be a basis for particle i, i = 1, 2.
(Iuq) and Iuz) need bear no relation to each other. ) Then
a state I@) of the form

I@& = al»&lvz&+blut&l») + el»&luz& (abc y 0), (1)

i.e., a state for which only one term —here Iut)luz) —of
the product basis is missing, admits a nonlocality proof
of the desired form.

This is rather immediate, as Hardy has shown, but we
include the argument because the form (1) is more gen-
eral than the one analyzed by Hardy, as well as for com-
pleteness. We also wish to rearrange Hardy's ingredients
in order to facilitate comparison with Bell's inequality.

Letting Ut = Iut)(utl and so on, it follows from (1)
that in the state

I @)we have the following: (i) Ut U2 = 0;
(ii) Ut = 0 implies that Wz = 1, where W2 = Itv2)(tv21
with ltvz) = (alv, ) + cluz))/V'laI + lcl'i (iii) Uz ——0 im-
plies that Wt ——1, where Wt ——Itvt)(tvtl with ltvt) =
(alvt) + blut))/+lais+ Ibis; and (iv) with nonvanishing
probability Wq = Wz = 0 (since abc g 0), as predictions
of quantum mechanics for the measurement of these ob-
servables. But if we assume local hidden variables for
these observables, it follows from (i)—(iii) that (iv') Wq
and W2 cannot simultaneously be 0, contradicting (iv).

Notice that neither (iv'), which is analogous to Bell's
inequality, nor (i)—(iii) involve probability, let alone a
probablistic inequality.

(II) Almost every spin state for the pair of spin-z par-
ticles is of the form (1) for a suitable choice of bases. In
fact, for any basis Iuq), Ivt) for particle 1, the general

state 14') assumes the form

I@) = l»)14'2) + lvt)142) (2)

where the e states form (part of) a basis for particle 1 and
the f states (part of) a basis for particle 2, we have that
for any entangled state which is not maximally entan-
gled there ar" by the definition of maximally entangled—terms i and j in (3) for which z p c~, i.e., to which the
argument in (III) may be applied. It thus follows gen-
erally that any entangled state which is not m~mally
entangled admits a "proof of nonlocality" which does not
involve inequalities.
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in which, for almost all states 14'), Igz) g 0, and Igz)
is neither proportional to nor orthogonal to IgPz), i.e.,

lyz) = crl4~) + lgQ' ) (n P 0) where lg' ) g 0 and

(g' IgP&) = 0. Thus such a I@) is of the form (1) with

luz) proportional to lgP&' ) and lv2) proportional to Igz).
(III) The argument in (II) of course fails when lgP&) is

proportional to Igz), in which case I@) is a product state.
It also fails when Igz) is orthogonal to IgP&), but this de-
fect will typically be removed by a nontrivial change of
basis for particle 1: Igz& = (utl@) depends antilinearly
on Iut). Thus lgz ) and Igz ) will be related to lgz) and

Igzv) by the (complex conjugation of) relations connecting
the transformed basis Iut), Ivt) to the original lut), lvq)
basis. Hence Igz ) and Igz ) will be nonorthogonal un-

less (gP&lgP&) = (gP&lgz), in which case 14') is said to be
maximally entangled.

(IV) Suppose that the particles are associated with
Hilbert spaces of dimension & 2. Then by the Schmidt
decomposition of a general state I@) for the pair,

I@) =) c'let)lfz)
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