
VOLUME 72 28 MARCH 1994 NUMBER 13

Quantum Stochastic Resonance
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We demonstrate that stochastic resonance, where an increase in the noise acting on a nonlinear
dynamical system increases the signal-to-noise ratio describing the response to periodic driving, can
occur in quantum systems as well as classical ones. We show that quantum stochastic resonance can be
observed experimentally by measuring conductance fluctuations in mesoscopic metals and describe the
experimental parameters for which it occurs.

PACS numbers: 03.65.—w, 02.50.Ey, 05.40.+j, 73.50.Td

Stochastic resonance (SR) is a phenomenon where the
response of a nonlinear dynamical system to external
driving is enhanced by the presence of noise [1-8]. Here
we extend this concept to the quantum regime, defining
the conditions for a similar resonance in the dissipative
tunneling of a two-state system coupled to its environ-
ment. A qualitatively different mechanism leads to SR in

this quantum system than in classical ones; in particular,
the appearance of a resonance requires an asymmetry in

the energies of the two states. We predict that quantum
stochastic resonance can be observed experimentally by
measuring conductance fluctuations in mesoscopic metals
and describe the experimental parameters for which it

may be observed.
The canonical example of SR consists of a particle in

a double-well potential subject to both random noise
(characterized by a temperature T) and periodic forcing,
which could consist of a sinusoidal variation of the asym-
metry energy s' of the wells with frequency ro, (Fig. 1).
One way of quantifying the response to the drive is the
signal-to-noise ratio (SNR) [2,3]; SR occurs when the
SNR passes through a maximum as the noise level is in-
creased. Another proposed characterization of SR is the
distribution of residence times in each minimum of the
potential well [6,7]. An exponential distribution occurs in

the absence of driving; in the SR regime a series of har-
rnonic peaks is sometimes observed. We show that both
of these characterizations can yield nontrivial SR in the
quantum case.

%'e characterize the system using a rate equation

description, which is valid when the dynamics are well de-
scribed in terms of transition rates W'~ and W —between
two states, and when the drive frequency and the in-

terwell transition rates are much slower than the in-

trawell relaxation rate [3,9]. The quantum-mechanical
dynamics of a two-state system coupled to its environ-
ment satisfy both of these conditions over a broad, experi-
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FIG. 1. Transition rates 8 + and 8' — of a quantum-

mechanical dissipative two-state system versus temperature T
[Eq. (7)l. The rates are scaled by Wp=—W+(T I K). The in-

set shows the asymmetric potential well; the transition rates are
modulated by varying the temperature T or the asymmetry en-

ergy e.
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to this order the SNR is independent of co, . For a
sinusoidally modulated asymmetry energy (s =ap+ 6s
& costs, t ),
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The correlation function (x(t+r)x(t)) can be formed
from linear combinations of correlations of n+(t) and
yields the same SNR.

The temperature derivatives of the rates do not enter
into Eq. (2). This result can be understood on physical

mentally accessible range [10].
First, following Ref. [3], we calculate the SNR of a

two-state system characterized by transition rates [3].
We define the probability of being in the position state
x+=1 (x = —1) as n+ (n-), and the transition rate
for the system to leave that state W+(t) (W-(t)), where
the time dependence of the W's comes from the external
drive. The experimental signature of such a system is the
random telegraph signal. The measured correlation func-
tion C(r) =n+;(t)n+;(t+r), where each n+; =0 or I

and the overbar indicates an average over many data
points i taken at equal time intervals, is described by

C(r ) =(n+(t+ r ix+, t)n+(t ~xp,
—~)),

where n+(t ~xp,
—~) is the probability of being in the +

state at t after being in state xp at t —~ and ()
denotes the average over t. For Markovian transitions,
the continuous probability n+(t) obeys the rate equation:

dn+ =W (t) -—[W (t)+W-(t)]n (t). (1)
dt

The power spectrum S(tp) is the Fourier transform of
C(r ); it contains a roughly Lorentzian broadband noise
background and b-function peaks at to 0, the drive fre-
quency co„and its harmonics. The ratio of the coefficient
of the fundamental peak and the value of the noise at tp,
is the SNR. Whether the system displays SR (a max-
imum in the SNR as a function of temperature) depends
on the specific form of the transition rates

To obtain analytic information [11],we expand

W+ (t) = W+ p+ w + cos(tp, t ) +
and solve Eq. (1) and evaluate the correlation function
C(r ) to order (w+ ) . For the special case that the tran-
sition rates obey detailed balance,

W+/W —=exp [so/ktt Tp+ b(e/ktt T) costu, t ],
where ka is Boltzmann's constant and T is the tempera-
ture, the leading order contribution to the SNR is

SNR =— b; (2)
4 I +exp[ap/kti Tp] ktt T

grounds when the modulation is very slow, m, (& W+, 8' —.
ln this limit the populations of the states folio~ the drive

adiabatically, so that the signal depends only on the ratio
of the rates and not on the temperature dependence of
each rate separately. The noise is a Lorentzian of width
Wp=W p+ W+p and height as tp 0 of I/Wp, so that
the SNR is proportional to the product of Wo and de-
tailed balance factors.

The expression (2) can be applied both in the classical
and quantum regimes. In the classical case W+p
-e ', where U is the height of the energy barrier
separating the two states [12,13]. Since U»e, the de-
tailed balance factor plays a minor role; the maximum of
the SNR as T is increased results from a competition be-
tween the exponentially increasing 8 + and a power law

of T that arises because incoherent transitions between
the two states destroy the synchronicity. Formally the
SNR has a peak when kttT-U; however, both the transi-
tion rate description of the dynamics and the Kramers
form for the rates break down at these temperatures. In
the quantum case, where tunneling dominates the transi-
tion rates, W+ is only weakly temperature dependent
[Fig. 1; see Eq. (7) below]. For this case the SNR for

asymmetry and temperature driving are shown in Fig.
2(a). Quantum SR does not occur in the limit of a sym-
metric well, a/kttT(( I, where W~ rx T '. Quan-
tum SR does occur for an asymmetric well. %'hen

sp/kttTp» 1, the signal is suppressed because the detailed
balance factor leads to an exponentially small W —,i.e.,
the particle does not leave the lower well. When kttTp
-sp the relative occupation in the upper state depends
more sensitively on temperature; when kq To&&op the rel-
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FIG. 2. (a) Signai-to-noise ratio [Eq. (2)l versus tempera-
ture. The SNR is scaled by IYp(bh), where IVp~IV+(I K)
and bh is bT (bs) for temperature (asymmetry) modulation.
(b) Distribution of residence times in each well V~ (r ) versus r
(in units of the drive period 2n/ru, ), obtained by numerical solu-
tion of Eqs. (3) and (4). V+(r) is normalized to unity at
r -0. For fast modulations ru, /2x)& IY+, both V+ and V- are
exponential; when lV —«ru, /2x« lV+, V (r) oscillates with—
period 2x/r0, . The maximum in the SNR and the structure in

V —(r) demonstrate that the quantum-mechanica1 dissipative
t~o-state system displays SR.
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V+(r) =Ne * G+(r),
+ 2m/m,

dtpW+(tp+ r)G+(r)- Jo (3)
i Eo+t

dr*bW (r') Y (rp).~exp 4 p

Since f,",
' *dr bW~(r*) =0 and W~(t +2m/ ro)

= W+ (r), G + (r ) G + (r +2n/ro, ).
To calculate G+ (r ) one must determine Y~ (tp). At

long times the probability of arrival relative to the phase
of the drive tends to a fixed distribution, so Y~ satisfies

Y~(r) =„driP~(r(ri)Y+(ri). (4)

One can solve the self-consistency Eqs. (4) numerically
and then use Eq. (3) to obtain V~(r) [see Fig. 2(b)).
Analytically, we have calculated G+(r) =G+p
+bG~(r) perturbatively in bW~(t) =w~ cosro, t [I I].
If w~ 0, then the normalization of V~(r) implies that
G ~p(r ) W ~. The leading correction bG ~ (r ) is at
the drive frequency co, . Two interesting limiting cases
are ro, /2n&) W+, W, where to lowest order

bGt (t) ] w w+

6 =28- 8 (sa)

and W «ro, /2x«W+, BW+ 0, where G+(r) =W+,
and

bG-(r)
cosNq T .6 —0 2 g

In the slow modulation limit co,/2n« W~ the exponen-
tial falloff in (3) dominates and no interesting structure
in V(r) is observed.

The classical, symmetric well has w+ = —w-; Eq. (sa)
implies that G(r) is a maximum and V(r) displays
peaks at values r = (2n + I ) ir/co, when ro, /2ir)& W+

(sb)

ative occupations are nearly equal and the signal again
decreases. The description in terms of transition rates is

valid up to temperatures of order the barrier height U
[101, so for the quantum system the theory should apply
accurately even for temperatures well above the peak in

the SNR.
Quite generally, the distribution of residence times,

V~(r), is the product of an exponential envelope and a
function that is periodic with the drive period 2z/ro, .
This follows because

~ 2s/u,
V+(t) =N drpP+ (rp+ t(rp) Y+(rp),

where N is a normalization constant and P+ (t2(r i) is the
probability of first leaving state + at time t2 given that
the state was entered at time t ~,

+f2
P+ (t2(t~) W+ (t2) exp —,dr'W+ (r*)

Y~(I) is the probability that the state was entered
at a time t satisfying t =t mod(2n/ro, ); by defini-

tion, Y+(t) Y+(t+2 /pro). Defining W+(t) =(W+)
+bW+(r),

[6,7, 14]. Figure 2(b) shows V~(r) for the quantum

case evaluated at the peak of the SNR curve for T driv-

ing shown in Fig. 2(a) for two frequencies. The fast
modulation limit [Eq. (5a)] yields very small harmonic

content because w+ is very small. However, in the limit

W-&(ro, /2ir«W+ [Eq. (5b)] G-(r) is a maximum and

V (r) displays peaks at values r =2nn/ro, [15]. We
have also calculated V~ (r ) analytically for s//kaT

[I I]; the structure of "odd" harmonics for the classical

case and "even" harmonics for the quantum case occurs
in this limit also. Note that V ~ (r ) depends explicitly on

the temperature dependence of the rates, so that it differs

fundamentally from the SNR. In the fast modulation

limit ro, /2ir» W+ the quantum system dislays a max-

imum in the SNR but very little structure in V~(r).
Therefore, these two quantities probe different aspects of
the dynamics.

Dissipative tunneling of a two-state system can be de-

scribed using a model Hamiltonian which couples it to an

ensemble of harmonic oscillators [10]:

H =
2 so', —

2 hb, a, +a',g V„(b~t+b„)+Agro„, (6)

where e is the asymmetry energy, h, is the tunneling ma-

trix element, the a; are Pauli matrices, and b„~ is a har-

monic oscillator creation operator with frequency co„. All

necessary information about the effects of the environ-

ment is contained in the spectral density J(ro) =(z/2)
&Q„V~2b'(ro —ro„). Tunneling in metals [16] is described

by Ohmic dissipation, J(ro) a(2xhro) for ro &( 0„
where 0, is a cutoff frequency large compared to 6 [17].

A parameter determining the dynamics is the renor-

malized tunneling matrix element A„related to h by
A„=A(A/D, )'~ ' '), where 0, is the bath cutoff frequen-

cy [18]. If either a or aT is much greater than hh„, then

the rapid fluctuations of the bath act to dephase the tun-

neling particle so that the probability of a transition be-

tween x+ and x+ is independent of the system's previ-

ous history. The two transition rates obey detailed bal-

ance, and the fast rate has the form [19]

P2 —2a 2 P T g/2kgT
' ' 2

h I (2a) 2nka T

(7)
where I is the (complex) gamma function. Figure I

shows W~ (T) below I K for a 0.25, e=0.4 K.
Recent experiments on submicron Bi wires have mea-

sured transition rates of two-state systems coupled to con-
duction electrons that below 1 K are well described by
Eq. (7) with values a-0.2-0.25 and 6„—I-5X 10
[20,21]. The asymmetry energy s in these experiments
depends on magnetic field [22]; changes in e of 0.05 K
have been induced by changes in the magnetic field as
small as 0.01 T [21]. Therefore, modulation of the asym-
rnetry energy as well as the temperature is possible. Re-
cently, coherent signals in response to both temperature
modulation and to electric field modulation of the asyrn-
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metry have been observed in this system [23].
The SNR has dimensions of frequency; to resolve the

variation of the SNR as the temperature is varied, the
measurement time I must be long enough that SNR
)&2m//. The maximum SNR attainable increases as the
lowest experimentally available temperature T;„de-
creases. For reasonable experimental parameters [21],
Tmin 0. 1 K, 6'—0.4 K, 88—0.05 K, and W+ —10 Hz, a
maximum SNR of 10 (at 0.2 K) requires /-1100 s. For
temperature driving with BT-0.05 K and ~-0.7 K,
resolving a SNR of 10 takes 360 s. These times are
reasonable since typical measurement intervals are
200-2000 s. For the parameters of Fig. 2(b) with

W+ —10 Hz, the structure in V —(r ) is well resolved in
+ 1000 s.

Another candidate system for the observation of quan-
tum SR is the tunneling of flux in a SQUID, which is also
described by Eq. (6) [24]. The asymmetry of the poten-
tial well depends on the externally applied dc magnetic
flux in the loop. A peak in the SNR as a function of tem-
perature for a driving occurs only if a & 3/2; otherwise
the SNR monotonically increases as T increases. For
temperature modulation, a peak in the SNR occurs for
a & 5/2. Published experimental data [24] have a =1.44,
so that a "resonance" in the SNR should be observable.

Although we have considered the particular transition
rates that describe the dissipative tunneling of a particle
coupled to an Ohmic bath, the results (2)-(5) remain
completely general (within the confines of the adiabatic
limit). Even if a theoretical expression such as Eq. (7)
for the transition rates is not known, experimental data
provide all the necessary input to predict the SNR and
V~ (r ) with no adjustable parameters. Deviations from
the theory may probe departures from Markovian dy-
namics.

In summary, we have extended the concept of stochas-
tic resonance to quantum systems and shown that modu-

lating the tunneling of a defect in a mesoscopic metal
should provide an experimental realization of quantum
SR. Previous experimental realizations of SR are limited
to the classical case [1,2,7,8], so the dissipative dynamics
of a two-state defect provide a fundamentally different
embodiment of SR.
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